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Stéphane Gauthier†

PSE, University of Paris 1 and Institute for Fiscal Studies
Guy Laroque‡

Sciences-Po, UCL and Institute for Fiscal Studies

June 13, 2024

Abstract

We examine optimal random nonlinear income taxation in a Mir-
rlees economy with risk-averse agents and quasilinear utility in labor.
Bunching in the deterministic optimum is necessary for socially ben-
eficial random redistribution. Fiscal discrimination that is unattain-
able in the deterministic case due to bunching, becomes feasible in
the stochastic case. Circumstances favoring lottery-based redistribu-
tion over deterministic policies involve a shift from a downward to an
upward pattern of incentives, aligning redistribution goals with incen-
tives. In an example with a Rawlsian government, lotteries should
be allocated to the most risk-averse population rather than the least
risk-averse.

JEL classification numbers: C61, D82, D86, H21.

Keywords: redistribution, asymmetric information, bunching,
random taxation.

∗We are grateful to Francis Bloch, Ben Brooks, Killian Dengreville, Piotr Dworczak,
Marc Fleurbaey, Deniz Kattwinkel, David Martimort, Nicolas Werquin, Floris Zoutman
and participants to the Public Finance and Mechanism Design session of the 2023 confer-
ence of the Society for the Advancement of Economic Theory in Paris for feedback on our
work. The usual disclaimers apply.

†stephane.gauthier@univ-paris1.fr; PSE, 48 bd Jourdan, 75014 Paris, France.
‡g.laroque@ucl.ac.uk; UCL, Drayton House, 30 Gordon St, London WC1H 0AX, UK.

1

mailto:stephane.gauthier@univ-paris1.fr
mailto:g.laroque@ucl.ac.uk


1 Introduction

In a first-best environment the government is assumed to have the ability to
observe the innate traits of individuals, which can serve as a basis for the
design of redistribution policies. Financial assistance, such as food stamps,
housing subsidies or cash benefits can be provided to the low-skilled poor,
disabled persons or those with qualifying medical conditions preventing gain-
ful activity. The spectrum of policies available to the government often is
more limited when some relevant characteristics of individuals are not pub-
licly known. Extra resources then have to be spent to perform a suitable
targeting of income support to those in need, implying a balance between
efficiency and equity concerns. An important insight of Mirrlees (1971) is to
provide us with a formal representation of the additional costs due to asym-
metric information. When relevant traits are privately known to potential
recipients, the government must also take into account incentive constraints
to meet self-selection among those genuinely in need of support, while deter-
ring claims from those who do not require assistance.

The literature shows that the burden of asymmetric information typically
falls on those in need, rather than those in more favorable situations. Indeed
the typical response to asymmetric information is to reduce the amount of
assistance. The lower aid enables the government to target those in need as
beneficiaries of assistance while others are discouraged.

Several ideas have therefore been explored to expand possible redistribu-
tion through improved targeting of assistance. Most of them involve some
form of ordeal mechanism, in the spirit of Nichols and Zeckhauser (1982).
The general idea to achieve a better targeting is to subject vulnerable pop-
ulations to challenging tasks or stressful situations. The government can
for instance rely on time-consuming shameful queuing to distribute essential
goods to low-income households. It may implement unnecessarily complex
and lengthy application processes to prove eligibility for benefits, or impose
additional conditions after admission to continue receiving benefits, such as
requiring beneficiaries to regularly send their children to school or undergo
health check-ups. The social usefulness of these complementary schemes de-
pends on balancing the direct cost borne by the targeted population and the
benefits from relaxed incentive constraints associated with the discourage-
ment of undue claims.

In these examples ordeal is usually taken as deterministic, i.e., pain comes
for sure. In this paper, we are interested into a specific form of ordeal, which
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is to impose random noisy transfers to risk averse recipients. It is known from
Weiss (1976), Stiglitz (1981), Stiglitz (1982) or Brito, Hamilton, Slutsky, and
Stiglitz (1995) that deterministic redistribution sometimes is socially domi-
nated. In Lang (2017), Ederer, Holden, and Meyer (2018) or Lang (2023),
randomization limits gaming social rules by blurring incentives. Vague stan-
dards or legal uncertainty deter firms to undertake strategies detrimental
to the society. Hospitals, for instance, may be discouraged from selecting
healthy but less costly to treat patients if they are not aware of the exact
amount of compensation they will receive.

In public finance, income lotteries follow from random noise in taxes,
because of e.g., administration errors, tax evasion coupled with non-compre-
hensive auditing, or uncertainty about the actual fiscal regime amid frequent
tax reforms. In Wijkander (1988) or Dworczak, Kominers, and Akbarpour
(2021), lotteries occur in the presence of quotas and rationing in the alloca-
tion of certain goods or services, as limits on market transactions lead some
agents to engage in trade with strictly interior probabilities (with some risk of
being rationed). In the same vein, random labor and before-tax income vari-
ations can be induced by the minimum wage and the risk of unemployment;
they can also be due to randomness in occupations for students who apply for
medical training in the Netherlands and are accepted by draw. But perhaps,
rather than before-tax income, the most explicit randomizations concern sit-
uations where the government instead relies on random after-tax incomes and
allocation of consumption goods for redistributive purposes. Tobin (1971) ar-
gues that income tests for housing subsidies make support ‘available only for
an accidentally or arbitrarily selected few’ while randomness from housing
programs involving rent regulation improves selectivity in access for low-
income populations in Weitzman (1977). Similar situations are actually very
common in situations where an agency has to allocate scarce resources. For
instance, in the distribution of public piped water and energy resources in
urban areas of developing countries, authorities frequently handle shortages
through rationing, potentially employing random allocation methods.

Solutions to optimization programs that we use in economics to character-
ize optimal policies can involve randomness because of failures of standard
convexity assumptions. In the presence of asymmetric information, these
failures come from the fact that the allocation intended for a given agent
influences both her utility and the utility of those who are willing to mimic
her, thus appearing in both sides of the incentive constraints. Randomizing
over allocations located on the frontier of the set delimited by the constraints
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leads to allocations on the convex hull of the constraints of the deterministic
program. The deterministic and random constraint sets then differ, which
makes it possible for some allocations within the convex hull to outperform
the best deterministic alternative.1

The general flavor of the economic argument seems very simple to grasp.
Following Hellwig (2007), suppose that the government would like to redis-
tribute income to low-skilled in a population of risk averse workers. Redistri-
bution is potentially limited if the government observes neither skill nor the
exact amount of labor, as high-skilled then might reduce labor effort to enjoy
higher transfers. Ordeal from randomness in the after-tax income designed
for low-skilled is detrimental to their welfare, but this also expands the scope
of possible redistribution by discouraging risk-averse high-skilled from relax-
ing effort. A deterministic optimum obtains if the welfare cost incurred by
those facing noise overcomes the gain from expanded scope of redistribution.
This is more likely to happen if high-skilled do not suffer much from income
noise. Hellwig (2007) indeed shows that the government should rely on deter-
ministic redistribution if risk aversion decreases with labor productivity, i.e.,
risk aversion is higher among low-skilled individuals than among high-skilled
individuals. This result leaves us with little hope for randomized taxes to
improve the welfare of the poor, who are usually found more risk averse than
the rich.

Although the above argument for useful randomization sounds highly in-
tuitive, it does not accord with a puzzling parametric example in Strausz
(2006). In this example, the first-best policy of a regulatory authority vio-
lates incentive compatibility, fitting the familiar pattern with high production
cost (inefficient) firms ready to mimic low cost (efficient) firms. The profit of
inefficient firms displays greater concavity, implying greater risk aversion to
random production requirements that would be set by the authority. Never-
theless, the second-best regulatory policy involves a random option designed
for the inefficient firms, which are the most rather than the less risk-averse
firms.

The counter-example in Strausz (2006) suggests that the economic argu-
ment identified so far for the role played by randomization does not fully
account for the role of random noise in the presence of asymmetric informa-
tion. Our paper provides an example in the same vein as Strausz (2006) in

1See also Pavlov (2011), Gauthier and Laroque (2014), Pycia and Unver (2015) or
Gauthier and Laroque (2017) for related approaches.
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an optimal taxation setup with a continuum of risk-averse taxpayers. Our
example puts forward a new channel for socially useful random policies. It
combines bunching in the deterministic optimum and a reversal of incentives.

We consider a Rawlsian government that only values the agents with
the lowest utility. If incentive compatibility issues could be dealt with the
first-order approach that neglects the possibility of bunching, the best deter-
ministic redistribution policy would involve socially disfavored (rich) types
envying the option designed for those more socially favored (poor). However,
the strong redistribution motive underlying Rawlsian criteria leads to bunch-
ing where many different taxpayers, including those socially favored, have to
enjoy the same income transfers and eventually earn the same after-tax in-
come. Thus, even though government would like to discriminate taxpayers,
this is prevented for incentive reasons. Eventually no redistribution relying
on deterministic tax tools is possible.

The uniform treatment of the agents in the deterministic optimum with
bunching akin to some form of uniform rationing blurs the pattern of incen-
tives. In this situation, every agent affected by bunching may be seen as
both unwilling to mimic any other agent and envied by the others. Small
tax randomization can then allow the government to exploit heterogeneity in
risk aversion in a way that reverses the pattern of incentives compared to the
deterministic case, where risk aversion does not matter. We exhibit random
transfers making the agents that the government wants to favor now envying
the treatment of those with lower social importance, a feature reminiscent
to countervailing incentives. That is, tax randomization allows for fiscal dis-
crimination by aligning incentives with the social desire for redistribution. A
similar reversal occurs in Strausz (2006), but not in Hellwig (2007) where the
same structure of incentives prevails both in the deterministic and stochas-
tic cases. Actually it should be clear that the disappointing outcome for
pro-poor policies in Hellwig (2007) relies on the fact that high-skilled types
continue to envy the low skilled once random noise is introduced into the tax
system. Our example shows that this is not a general property.

The gain from the aligned incentives however comes with a cost, as the
agents favored by the government have to face randomness. In a particular
parametrization of our model the gain from aligned incentives overcomes the
cost, and so redistribution should involve a random income for the socially
favored (lowest utility) agents, though they display the highest risk aversion.
This may provide incentive-based justifications for the risk of unemployment
induced by the minimum wage, and other forms of rationing coupled with
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random allocation commonly used in social assistance and housing policies.
The paper proceeds as follows. Our setup with random redistribution is

described in Section 2. Section 3 characterizes the role played by bunching
in the deterministic optimum. Section 4 shows that, in the presence of small
random noise in taxes, the direction of incentives can be reversed compared
to the deterministic case. Section 5 provides a condition for socially useful
randomization in the special case where bunching prevents any determinis-
tic redistribution. Some properties of random redistribution in this case are
discussed in Section 6. The analysis is generalized in Section 7, and Sec-
tion 8 presents a parametric example where optimal redistribution involves
randomness. The gain from small randomization appears as quantitatively
modest in this example. Finally, Section 9 concludes.

2 General framework

A government wants to redistribute income between a continuum of agents in
a population of total unit size. Heterogeneity across agents is characterized
by θ, a real parameter taking values in Θ =

[
θinf , θsup

]
, which is referred to as

the type of the agent. It has cumulative distribution function F : Θ → [0, 1]
associated with positive density f : Θ → R++.

The preferences of a type θ agent are represented by the quasilinear utility
function

u(c, θ)− y. (1)

The quasilinear formulation is often used in industrial organization and con-
tract theory where c is a quantity of some good sold to a valuation type θ
buyer against a total payment of y. One can also view c as benefits in, e.g.,
public housing and rent assistance voucher programs, while y is the contri-
bution or rent made to the regulatory agency. In an interpretation more
in line with the public finance literature, y is before-tax labor income, the
government levies the tax y − c, and c is after-tax labor income that is also
consumption. Earning y requires some effort, hence the disutility cost.

The function u is increasing and differentiable everywhere in c and θ. It is
also strictly concave in c, so that every agent is risk-averse. Its first derivative
u′
c(c, θ) with respect to c coincides with the marginal rate of substitution of

consumption for before-tax income for a type θ agent. It is assumed to satisfy
the Spence-Mirrlees condition that u′

c(c, θ) is decreasing in θ for all (c, θ), i.e.,
agents with a higher type value an extra amount of consumption less.
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The formulation (1), where θ enters as an argument of the function u,
suggests interpreting θ as related to consumption tastes. In view of the
direction of the Spence-Mirrlees assumption, it may also be interpreted as
accounting for other incomes from, e.g., intra-family transfers or inherited
capital, or some extra access to housing facilities. Higher types are better
endowed in these other incomes or capacities and thus value an additional
amount of good less.

This latter interpretation may be the most natural one in the parametric
example developed in Section 8, where u(c, θ) is specialized to ln(c + θ), so
that θ must be expressed in units of after-tax income. The additive formu-
lation may also fit the case of housing, with c and θ being the surface areas
allocated by the agency and the access capacities available to the recipients,
respectively. An agency with redistribution concerns would probably seek to
give less housing to those who are otherwise better off, for example, young
adults more helped by their parents. An egalitarian objective could go as
far as making the total surface area (the sum of the distributed surface area
c and θ) the same for everyone. More generally, θ can stand for some sub-
stitute to the distributed good c against payment y. Think of grey water,
stored rainwater or groundwater that are substitutes for public piped water,
or various kinds of solar panels that can be used to substitute for publicly
provided electricity.

It is important to emphasize that the direction of our Spence-Mirrlees
condition departs from the main stand of the public finance literature, where
θ is usually taken as a labor productivity parameter, implying a positive
cross-derivative for u(c, θ). In, e.g., Lollivier and Rochet (2003), an agent
with labor productivity θ must provide a labor effort y/θ to earn y. Her
utility is v(c)− y/θ or, after multiplying by θ, θv(c)− y. So u(c, θ) = θv(c)
and u′′

cθ(c, θ) = v′(c) > 0. In the economic examples discussed, however, the
negative derivative in our Spence-Mirrlees condition seems more appropriate.
It is more likely that the marginal utility of additional living space from a
housing assistance program is lower for those with greater outside housing
access, and public piped water and electricity should be less valuable for
those who have better access to private alternatives.

The government designs a redistribution policy between the agents. The
policy is defined by a menu (c̃(θ), ỹ(θ)) of, say, after- and before-tax income
lotteries. The menu is feasible if aggregate consumption falls below aggregate
production,
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∫
Θ

E[c̃(θ)− ỹ(θ)] dF (θ) ≤ 0. (2)

The government is assumed to know the distribution of types, but not to
observe the value of θ for every agent. This value remains private information
to the agent. Therefore the government must also ensure that agents choose
the income pair designed for them. This is satisfied if the incentive constraints

E[u(c̃(θ), θ)− ỹ(θ)] ≥ E[u(c̃(τ), θ)− ỹ(τ)] (3)

hold for all (θ, τ) in Θ×Θ.
An optimal redistribution policy is a menu (c̃(θ), ỹ(θ)) that maximizes the

social welfare objective of the government subject to the feasibility constraint
(2) and the incentive constraints (3).

We expect the wealthier consumers to have better access to private sub-
stitutes. See Abajian et al. (2024) for recent empirical evidence on water
supply in Cape Town. Therefore, it seems natural for a redistributive govern-
ment to prioritize individuals with low, more likely less well-off types. Here,
we consider a Rawlsian government that only values the type of agents with
the lowest utility. In all the paper, the type with the lowest utility appears to
be θinf . Let V (θ) = E[u(c̃(θ), θ)− ỹ(θ)] denote the expected indirect utility of
type θ when she chooses the contract designed for her. The Ralwsian social
objective is

V (θinf). (4)

The policy is deterministic if it is made of degenerate lotteries (c(θ), y(θ))
where every type θ earns the before-tax income y(θ) with certainty and con-
sumes c(θ) with certainty (the absence of a tilde mark applies to deterministic
options). We are interested into circumstances where some agents face non-
degenerate lotteries in the optimal redistribution policy.

3 Randomness and uniform rationing

Given the quasilinear form of agents’ utility, replacing the lottery ỹ(θ) with
the sure outcome y(θ) = E[ỹ(θ)] affects neither the constraints nor the social
objective. Thus there is no loss to consider that every type θ earns before-
tax y(θ) with certainty. In this section, we show that a menu of after-tax
income lotteries (c̃(θ)) can be socially useful only if incentive considerations
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prevent the government relying on deterministic fiscal tools from discrimina-
tion. That is, a uniform tax treatment has to be applied to different types
of agents.

Following the terminology used in, e.g., Laffont and Martimort (2002),
we define the optimal ‘relaxed’ redistribution policy as a menu (c̃(θ), y(θ))
maximizing the social objective (4) subject to the feasibility constraint (2)
and the necessary first-order conditions for a local truthful report in (3),

V ′(θ) = E [u′
θ(c̃(θ), θ)] (5)

for all θ. The optimal relaxed redistribution policy coincides with the op-
timal redistribution policy if it meets the incentive constraints (3), but not
otherwise. Summing up the first-order conditions yields

V (θ) = V (θinf) +

∫
Θ

E [u′
θ(c̃(z), z)] dz.

Replacing y(θ) with E[u(c̃(θ), θ)]−V (θ) into the feasibility constraint (2) gives
the indirect utility V (θinf ). After using the integration by parts formula, it
writes as

V (θinf) =

∫
Θ

E[W (c̃(θ), θ)] dF (θ) (6)

where m(θ) = [1− F (θ)] /f(θ) is the Mills ratio and

W (c, θ) = u(c, θ)− c−m(θ)u′
θ(c, θ)

represents the virtual contribution of type θ to social welfare when she faces
after-tax income c with certainty.

In the optimal deterministic relaxed redistribution policy, every type θ
gets for sure

c∗(θ) = argmax
c

W (c, θ).

Suppose that this policy coincides with the optimal deterministic redis-
tribution policy. Then, in the deterministic case, the necessary first-order
conditions for a local truthful report are sufficient to deal with incentive re-
quirements. There is no bunching in the deterministic optimum and, in view
of the Spence-Mirrlees assumption, c∗(θ) is non-increasing in θ. The govern-
ment can discriminate agents by designing a profile of transfers that make
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the after-tax labor income lower for higher types, those with lower social
importance, who put less value on consumption.

Since then W (c∗(θ), θ) ≥ W (c, θ) for all c and θ, we have W (c∗(θ), θ) ≥
E[W (c̃, θ)] for all c̃ and θ. In particular, the inequality holds true if for all θ
we set c̃ equal to the lottery c̃(θ) that maximizes (6). This yields:

Lemma 1. A random redistribution policy is socially useless if the optimal
deterministic redistribution policy coincides with the optimal deterministic
relaxed policy, i.e., the optimal deterministic redistribution policy involves no
bunching.

Proof. The argument given above leads to∫
Θ

E[W (c̃(θ), θ)] dF (θ) ≤
∫
Θ

W (c∗(θ), θ) dF (θ)

for every menu (c̃(θ)). To conclude the proof, observe that social welfare in
an optimal redistribution policy cannot be greater than welfare in an optimal
relaxed policy (which is in the left-hand side of the above inequality). □

Lemma 1 shows that socially useful randomness in redistribution can
be achieved only if the incentive constraints associated with the optimal
deterministic policy imply bunching, where different types of agents face
the same income option. In the context of housing, the authority would be
compelled to allocate similar housing goods to recipients with different, but
privately known, outside access capacities to housing summarized by θ.

Such an outcome can be interpreted as a form of uniform rationing. In-
deed, in a market where all agents would face the same price, those with
greater outside access capacities (θ is high) would purchase less housing
than others (θ small), as they value less extra housing from the market (the
marginal utility u′

c(c, θ) decreases with θ). The former type of agents may
accordingly be viewed as being forced to have greater consumption, while
the latter are rationed. This suggests a possible role for randomness as a
discriminatory tool for the government. Random transfers are beneficial to
the extent that a non-uniform treatment of agents is socially desirable but
cannot be achieved using deterministic tools. This is the idea we explore in
the next section.

10



4 A reversal of incentives

If type θ faces the pair (c(θ), y(θ)) with certainty, the incentive constraints
(3) simplify to

V (θ) = u(c(θ), θ)− y(θ) ≥ u(c(τ), θ)− y(τ)

for all θ and τ . Type θ must receive the informational rent u(c(τ), θ) −
u(c(τ), τ) so that she does not mimic type τ . This is a positive amount for
τ < θ since u′

θ(c, θ) > 0 for all (c, θ).
Following textbook arguments in, e.g., Laffont and Martimort (2002), the

menu (c(θ), y(θ)) satisfies the incentive constraints if and only if, for all θ,
V ′(θ) = u′

θ(c(θ), θ) and the second-order monotonicity requirement that c(θ)
is non-increasing. Incentive considerations imply an indirect utility increasing
with type, V ′(θ) ≥ 0 for all θ, because of informational rents. The Rawlsian
government, if relying on deterministic tax tools, cares about the lowest type
θinf of agents only.

Our argument in favor of randomization is easier to grasp in the config-
uration where the best ‘relaxed’ menu (c∗(θ)) violates monotonicity require-
ments for incentive compatibility, and eventually every agent is concerned
by bunching in the deterministic optimum (more general configurations are
examined in Section 7). In this polar case, every agent receives the same
after-tax income c∗. From (6), in the absence of random noise, we have

c∗ = argmax
c

∫
Θ

W (c, θ) dF (θ).

Applying the integration by parts formula,∫
Θ

m(θ)u′
θ(c, θ) dF (θ) = u(c, θinf) +

∫
Θ

u(c, θ) dF (θ),

so that V (θinf) = u(c, θinf)− c and the optimal level c∗ of income, if interior,
satisfies

u′
c

(
c∗, θinf

)
= 1. (7)

The incentive constraints require that agents also earn the same before-
tax income y∗. Hence the utility obtained by each type θ agent is u(c∗, θ)−y∗.
This alternative can be implemented in a decentralized setup through the

11



use of an income tax schedule with two brackets, where before-tax income is
taxed at a very low rate if falling below y∗ while it is taxed a high enough
rate otherwise. Since feasibility requires y∗ = c∗, there is no redistribution at
all in the optimal deterministic policy. This completes the characterization
of this policy.

Let us now randomize the after-tax income. A lottery c̃(θ) = c∗ + ε̃(θ)
is designed for type θ. We consider type-specific realizations of the random
variable ε̃(θ) that stand close to 0. In addition, we require that greater noise
comes with greater income transfer. The mean and variance of ε̃(θ) are so
that E[ε̃(θ)] = var[ε̃(θ)] = λv(θ), with λ a positive real number close to 0
and v(θ) ≥ 0 a (rescaled) variance bounded from above. For such lotteries,
the (second-order Taylor expansion of the) expected utility of type θ when
she chooses the lottery c̃(τ) designed for type τ writes

E [u (c∗ + ε̃(τ), θ)] ≃ u (c∗, θ) + λu′
c (c

∗, θ)

(
1− A (c∗, θ)

2

)
v(τ)

where

A(c, θ) = −u′′
cc(c, θ)

u′
c(c, θ)

> 0

is the coefficient of absolute risk aversion of type θ. Randomness in after-
tax income allows the government to exploit heterogeneity in individual risk
aversion, captured by A (c∗, θ). Indeed randomness implies a change in the
sub-utility u (c∗, θ) obtained from consumption in the deterministic case that
is λS (c∗, θ) v(τ) for type θ, with

S (c∗, θ) = u′
c (c

∗, θ)

(
1− A (c∗, θ)

2

)
.

The quantity S(c, θ) approximates the change in utility derived by type θ
agent following a unit increase in her after-tax income from c. Hence it may
be thought of as a valuation for the consumption good. In view of (7) and
the Spence-Mirrlees assumption, we have

S (c∗, θ) ≤ u′
c(c

∗, θinf) +
1

2
u′′
cc (c

∗, θ) < 1.

The shape of S(c, θ) is otherwise difficult to characterize. The interpretation
in terms of extra utility suggests that the relevant economic case should
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be one where S(c, θ) takes positive values while u′′
cc (c, θ) < 0. In addition,

we also expect from the direction of the Spence-Mirrlees assumption some
pressures for the utility gain to be decreasing in θ, S ′

θ(c
∗, θ) < 0. This is

indeed what happens for standard specifications.

Example 1. CRRA preferences. Suppose that u(c, θ) = c1−θ/(1 − θ) for
θ ̸= 1. The characterization of the optimal after-tax income in (7) gives
c∗ = 1. When evaluated at this income, it is readily checked that

S(c∗, θ) = 1− θ

2
and S ′

θ(c
∗, θ) = −1

2
< 0.

Referring to the upper bound for the coefficient θ of relative risk aversion ob-
tained by Chetty (2006), which equals 2, we have S(c∗, θ) > 0 for empirically
plausible values of θ.

Example 2. CARA preferences. Let u(c, θ) = − exp(−θ (c− c̄))/θ for some
consumption c̄ ≥ 0. Then (7) gives c∗ = c̄, and both S(c∗, θ) and S ′

θ(c
∗, θ)

are as in the CRRA case. The estimates of the coefficient of absolute risk
aversion θ in Cohen and Einav (2007) are of an order of magnitude of 10−2

at most. For such values, S(c∗, θ) > 0.

Example 3. Logarithmic Preferences. Let u(c, θ) = ln (c+ θ). Then (7)
gives c∗ = 1 − θinf . Non-negative consumption requires θinf ≤ 1. With
θinf = 0,

S(c∗, θ) =
1

c∗ + θ

(
1− 1

2

1

c∗ + θ

)
> 0,

and

S ′
θ(c

∗, θ) = − 1

(c∗ + θ)2

(
1− 1

c∗ + θ

)
< 0.

From now onward, based on the insights from these examples, we assume:

Assumption A1. The after-tax income valuation S(c∗, θ) takes positive
values and decreases with θ.

Let y(θ) denote the before-tax income of type θ in the presence of after-
tax income perturbations; it is y∗ + dy(θ) for some deterministic dy(θ) close
to 0. The indirect utility V (θ) writes

E [u (c∗ + ε̃(θ), θ)]− y(θ) ≃ u (c∗, θ) + λS (c∗, θ) v(θ)− y(θ) (8)
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of type θ under thruthful reporting. The incentive constraints (3) then reduce
to

U(θ) = λS (c∗, θ) v(θ)− y(θ) ≥ λS (c∗, θ) v(τ)− y(τ)

for all τ and θ. Incentive constraints are now driven by a sub-utility U(θ) of
the overall utility V (θ) of the agents, with monotonicity properties that may
differ from those of V (θ). This is what makes possible a reversal of incentives
when random noise is introduced into the redistribution policy.

From a formal viewpoint, our parametrization of lotteries gives rise to
incentive constraints which have a familiar shape in v(θ) and y(θ). It is then
straightforward to deal with incentives in the presence of tax lotteries. The
usual arguments yield:

Lemma 2. Consider a menu where the government uses random perturba-
tions ε̃(θ) to the optimal deterministic after-tax income c∗ with mean and
variance λv(θ) for some λ ≥ 0 close to 0. The incentive constraints (3) are
satisfied if and only if

U ′(θ) = λS ′
θ (c

∗, θ) v(θ)

and v(θ) is non-increasing for all θ.

Proof. Using the envelope theorem, a necessary first-order condition for
a local truthful report is U ′(θ) = λS ′

θ (c
∗, θ) v(θ) for all θ. The second-order

conditions write S ′
θ (c

∗, θ) v′(θ) ≥ 0 for all θ where v is differentiable. Finally,

∂

∂τ
(S (c∗, θ) v(τ)− y(τ)) =

∫ θ

τ

S ′
θ (c

∗, z) v′(τ) dz

has the same sign as θ − τ since S ′
θ (c

∗, z) < 0 for all z. It follows that (3) is
satisfied for all τ and θ. This concludes the proof. □

Lemma 2 highlights a reversal of incentives following the introduction
of random noise in redistribution. Indeed, by Assumption A1, the sub-
utility U(θ) driving incentives turns decreasing with θ in the presence of
noise (v(θ) > 0 for some θ), though the overall utility V (θ) remains increas-
ing with type (V ′(θ) = u′

θ (c
∗, θ) + λS ′

θ (c
∗, θ) v(θ) ≃ u′

θ (c
∗, θ) > 0 for λ close

enough to 0 and v(θ) bounded from above).
The change in the direction of incentives captured by U ′(θ)V ′(θ) ≤ 0 goes

with a change in the sign of the informational rent λ (S (c∗, θ)− S (c∗, τ)) v(τ)
given to type θ to avoid she mimics type τ . It now turns positive for τ > θ,
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much in contrast with the downward pattern that prevails when deterministic
redistribution is used. In this sense, randomness in the redistribution policy
aligns incentives with social preferences.

5 Welfare improving randomization

The argument put forward in favor of randomization in the literature is based
on the relaxation of incentives when random noise is imposed on mimickees.
It requires that these agents are less risk averse than the mimickers (Hellwig
(2007)). The reversal of incentives in Lemma 2 is of a different nature since
S ′
θ(c

∗, θ) < 0 is consistent with a coefficient of absolute risk aversion A(c∗, θ)
that can be increasing (in Examples 1 and 2) as well as decreasing in θ (in
Example 3). In the special case of logarithmic preferences considered in Ex-
ample 3, where A(c∗, θ) = 1/(c∗+ θ), the alignment of social preferences and
incentives can be achieved even though type θinf agents display the highest
risk aversion.

Still, it is not clear at this stage whether random redistribution is socially
useful since, by Lemma 2, incentive compatibility also requires a variance
non-increasing with θ. That is, type θinf agents receive the greatest aver-
age transfers but also face the greatest noise. The following result gives a
condition for the transfers to compensate for the loss from random taxation.

Proposition 1. Optimal random redistribution. Consider a menu where
the government uses random perturbations ε̃(θ) to the optimal deterministic
after-tax income c∗ with mean and variance λv(θ) for some λ ≥ 0 close to
0. Let v(θ) be non-negative, non-increasing and bounded from above. The
random menu improves upon the deterministic optimum if and only if∫

Θ

ϕ(c∗, θ)v(θ) dF (θ) > 0 (9)

where
ϕ(c, θ) = S (c, θ)− 1−m(θ)S ′

θ (c, θ) .

A proof is in Appendix A. A heuristic argument for deriving (9) follows
from the perturbation methodology developed by Saez (2001), when applied
to the total collected tax. Once random noise is introduced, the tax paid by a
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θ agent is y(θ)− [c∗ + λv(θ)]. Using the definition of U(θ) = λS (c∗, θ) v(θ)−
y(θ), the total collected tax can be written∫

Θ

[λS (c∗, θ) v(θ)− U(θ)− c∗ − λv(θ)] dF (θ) (10)

Consider a reform that increases the (rescaled) variance v(θ) of the after-
tax income by a small amount dv for all types between θ and θ + dθ, dθ
positive close to 0. These types, who are directly concerned by the reform,
are in total number f(θ)dθ. The argument distinguishes so-called behavioral
and mechanical effects of the reform.

The behavioral effect is the change in collected tax abstracting from the
adjustments needed to meet incentives, i.e., with U(θ) temporarily main-
tained fixed at its initial level. It captures the net social cost of the random-
ization that transits through the noise bearing on the socially favored agents.
Every type θ directly concerned by the reform works more, which increases
her before-tax income by λS (c∗, θ) dv. The total tax resources thus increase
by λS (c∗, θ) f(θ)dv dθ. By assumption, the government takes advantage of
the noise to increase the average transfer to every such agents, which costs
λdv per agent. Overall the change in collected tax is λ [S (c∗, θ)− 1] f(θ)dv dθ.
Then, given U(θ), the reform yields a lower amount of collected taxes, which
represents a net cost for the society (recall that S (c∗, θ) < 1).

This cost has to be compared to the social gain from getting incentives
aligned with redistribution tastes. It obtains when one accounts for the re-
sponse of U(θ) to the reform that introduces random noise. This is the
mechanical effect of the reform. By Lemma 2, U ′(θ) changes by dU ′(θ) =
λS ′

θ (c
∗, θ) dv for every type directly concerned by the reform. It follows

that the utility changes by dU = dU ′(θ)dθ = λS ′
θ (c

∗, θ) dv dθ for every
type above θ + dθ, implying a change in total collected tax equal to −(1 −
F (θ))λS ′

θ (c
∗, θ) dv dθ. Since S ′

θ ≤ 0, these indeed gives additional tax re-
sources.

The final change in taxes following the introduction of the noise is

λ [S (c∗, θ)− 1] f(θ)dv dθ − (1− F (θ))λS ′
θ (c

∗, θ) dv dθ

or equivalently,

λ [S (c∗, θ)− 1−m(θ)S ′
θ (c

∗, θ)] f(θ)dv dθ.
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The term into brackets is ϕ (c∗, θ) in Proposition 1. It balances the loss in
taxes from agents concerned by the reform (their higher production does
not compensate the cost from the additional transfers they receive) and the
greater taxes allowed by the reduced informational rents given to high types
above θ.

6 Shape of random redistribution

The inequality (9) shows that there is no social improvement from random-
ized taxes if S ′

θ (c
∗, θ) > 0, i.e., in the absence of the reversal of incentives

(recall that S (c∗, θ) < 1). It is satisfied if and only if ϕ(c∗, θinf) > 0 if the
additional tax ϕ(c∗, θ) collected from type θ is decreasing with θ. In this
case, there exists a threshold type θ∗, θ∗ > θinf , such that every type θ ≤ θ∗

should face random taxes.
An extreme form of conflict between social redistribution and incentives

occurs if ϕ(c∗, θ) instead is increasing in θ. Then a necessary, but not suf-
ficient condition for (9), is ϕ(c∗, θsup) > 0. The government would like to
design random taxes for high types specifically, but this would violate the
monotonicity requirement for incentive compatibility that v(θ) must be non-
increasing. Redistribution would then have to involve random taxes for all
agents.

Exploiting the special form of (9), where the variance of the transfers
enters linearly, allows us to go beyond these two polar configurations. To
this purpose, we rely on the methodology introduced by Myerson (1981) and
consider the new function

H(c∗, q) =

q∫
0

ϕ(c∗, F−1(z)) dz

for every quantile q ∈ [0, 1] of the type distribution. Let G be the concave
hull of H, and define ϕ̄(c∗, θ) = G′

q(c
∗, F (θ)) as the so-called priority rule.

We have:

Proposition 2. Consider a menu where the government uses random per-
turbations ε̃(θ) to the optimal deterministic after-tax income c∗ with mean
and variance λv(θ) for some λ ≥ 0 close to 0. The random menu improves
upon the deterministic optimum if and only if

ϕ̄(c∗, θinf) > 0.
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There exists θ∗ ≥ θinf such that the highest amount of extra taxes from after-
tax income randomization obtains by setting v(θ) > 0 and non-increasing for
all θ < θ∗, and v(θ) = 0 for all θ ≥ θ∗.

The result follows from the fact that G′
q(c

∗, F (θ)) is non-increasing in θ
since G(c∗, q) is concave in q. Its proof mirrors Myerson (1981), Section 6
pp. 68-69, or Condorelli (2012), and thus it is omitted. The two polar cases
with ϕ(c∗, θ) monotone in θ obtain for H(q) either concave or convex for all
θ. In the concave case, ϕ(c∗, θ) is decreasing in θ, and ϕ̄(c∗, θinf) = ϕ(c∗, θinf).
In the convex case, ϕ(c∗, θ) is increasing in θ,

ϕ̄(c∗, θ) = ϕ̄(c∗, θinf) = H(c∗, 1) =

∫
Θ

ϕ(c∗, z) dz

for all θ, and random taxes should be used if and only if a policy with uniform
variance of taxes (v(θ) = v > 0 for all θ) yields an extra amount of collected
tax.

In view of Proposition 2, let us set v(θ) = v > 0 if θ ≤ θ∗, and v(θ) = 0
otherwise. Then the inequality (9) is met if and only if there exists some
threshold type θ∗ ∈

[
θinf , θsup

]
such that2

1− S(c∗, θinf)

1− S(c∗, θ∗)
< 1− F (θ∗). (11)

It cannot be that θ∗ = θinf since this would imply that no agent faces income
risk (indeed both sides of (11) then equal 1) while (9) is met. It can neither
be that all agents should be exposed to random taxes: by Assumption 1,
S(c∗, θ) is decreasing with θ and takes values in [0, 1), the left-hand side of
(11) is positive for all types while its right-hand side is 0 at θ∗ = θsup.

The writing (11) provides us with a better understanding of the economic
conditions where random noise in redistribution can be useful. First, for the
existence of an interior threshold where (11) is met, S(c∗, θinf) has to be
much higher than S(c∗, θ) for almost all θ > θinf , in which case the left-hand
side of (11) gets closer to 0. Moreover, most agents should have high types
close enough to θsup, so that 1− F (θ) in the right-hand side of (11) remains
close to 1 for a large part of the population. Relying on the interpretation
of θ as some given extra income or outside access capacities to housing, this

2A detailed derivation of (11) is in Appendix B.
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corresponds to a situation where there are few poor, and thus a somewhat
egalitarian distribution in this extra income or capabilities.

Overall, (11) shows that a combination of wide dispersion in the valuation
of the good S(c∗, θ) and low variance in the extra income/capability θ favors
redistribution by means of lotteries. Such a combination is reminiscent of
circumstances identified by Weitzman (1977) and Spence (1977), where the
price system is a better instrument than rationing to allocate resources. This
may not come as a surprise. Indeed, when (11) is met, the socially favored
types θinf value the good much more than the rest of the population, which
gives the government strong incentives to leave them with a higher after-
tax income or allocate a greater amount of goods. However, this cannot be
achieved in a deterministic fashion, as deterministic fiscal tools yield bunch-
ing; all after-tax incomes are equal and some uniform rationing of consump-
tion must be implemented. Intuitively, screening then is difficult to make
since it has to be based on small differences in extra income/capabilities θ.
Following Lemma 2, the government can instead base screening on valuation
S(c∗, θ) in the presence of random noise. This allows, to some extent, for the
replication of the market allocation, with higher, though stochastic, transfers
to those actually rationed, who would have earned a higher after-tax income
or consumed more through the market.

If applied to the case of housing, the deterministic optimum in the ini-
tial situation with bunching involves a form of uniform rationing, whereas
the society would prefer to allocate more housing to agents with lower out-
side housing capabilities. By (11), randomness becomes socially beneficial
in circumstances where the housing market would be superior to rationing,
provided that the market would have led to allocations that satisfy the de-
sired monotonicity. Related arguments may also apply to water distribution
in developing countries threatened by water shortages and constrained to
implement periodic rationing. If wealthy households have private pumping
means that the public authorities cannot observe, the condition (11) delin-
eates the circumstances in which one might consider shifting from uniform
rationing to random cuts varying according to, e.g., the average wealth or
property value of different neighborhoods. In the energy sector, where the
wealthier may have private sources of supply (e.g., solar panels) that make
public provision less attractive, some uncertainty in the public supply may
be socially profitable as well.
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7 Non-uniform partial bunching

So far we have considered the polar case of uniform bunching in the determin-
istic optimum where every type faces the same option (c∗, y∗). In practice,
tax authorities often rely on tax schemes with more than two different tax
brackets. Then, provided that bunching operates everywhere, the general
form of the optimal deterministic tax schedule consists of a collection of in-
come pairs (c∗i , y

∗
i ) assigned to every agent with a type ranging from θ̄i to

θ̄i+1

(
θ̄i < θ̄i+1

)
. Proposition 3 below gives a natural generalization of the

uniform bunching alternative examined in Proposition 1 to such schedules
with discontinuities.

Proposition 3. Non-uniform deterministic bunching. Suppose that the op-
timal deterministic redistribution policy consists of n different tax brackets,
with every type of agents in

[
θ̄∗i , θ̄

∗
i+1

)
earning y∗i before tax and c∗i after-tax.

There exists a random policy that improves upon the deterministic optimum
if

n∑
i=1

θ̄∗i+1∫
θ̄∗i

ϕ (c∗i , θ) v(θ) dF (θ) > 0

for some non-increasing profile of after-tax income variance (dv(θ)) close to
0.

We outline the argument for the two-interval configuration n = 2 charac-
terized by an interior threshold type θ̄∗ such that every type θ < θ̄∗ earns c∗1 as
after-tax income, while the remaining higher types θ ≥ θ̄∗ earns c∗2 (c

∗
1 > c∗2).

This deterministic schedule is dominated if the introduction of small random
noise dv(θ) = λv(θ), λ > 0 small, on the after-tax income yields a higher
amount of collected taxes while the socially favored type θinf agents do not
loose, dU(θinf) ≥ 0. The additional tax generated by the reform can then
be redistributed to every agent through a uniform adjustment in before-tax
income without violating incentive requirements.

The utility of every type θ < θ̄∗ changes by

dU(θ) = dU(θinf) +

θ∫
θinf

λS ′
θ (c

∗
1, z) dv(z) dz
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so that the total change in utility from these agents can be written, after
using the integration by parts formula,

dU(θinf)−
[
1− F

(
θ̄∗
)]

dU
(
θ̄∗
)
+

θ̄∗∫
θinf

λS ′
θ (c

∗
1, θ)m(θ) dv(θ) dz dF (θ).

Similarly, the utility of every type θ ≥ θ̄∗ changes by

dU(θ) = dU(θinf) +

θ̄∗∫
θinf

λS ′
θ (c

∗
1, z) dv(z) dz +

θ∫
θ̄∗

λS ′
θ (c

∗
2, z) dv(z) dz,

which now yields a total utility change for these agents equal to

[
1− F

(
θ̄∗
)]

dU
(
θ̄∗
)
+

θsup∫
θ̄∗

λS ′
θ (c

∗
2, θ)m(θ) dv(θ) dF (θ).

Then, from (10), the additional amount of collected tax implied by the
introduction of random noise writes

θ̄∗∫
θinf

λϕ (c∗1, θ) dv(θ) dF (θ) +

θsup∫
θ̄∗

λϕ (c∗2, θ) dv(θ) dF (θ)− dU(θinf).

Given a profile (dv(θ)), which Lemma 2 shows must be non-increasing to
meet incentive requirements, the highest amount of collected tax that does
not hurt type θinf agents obtains by setting dU

(
θinf
)
= 0. This yields the

condition given in Proposition 3 for n = 3, with θ̄∗1 = θinf , θ̄∗2 = θ̄∗ and
θ̄∗3 = θsup.

Remark 1. Partial bunching. Proposition 3 also applies for θ̄∗n+1 < θsup,
i.e., in the absence of bunching at the top of the distribution. Then, one can
set v(θ) = 0 for all types that are not concerned by bunching, θ ≥ θ̄∗n+1. The
change in collected tax is

n∑
i=1

θ̄∗i+1∫
θ̄∗i

λϕ (c∗i , θ) dv(θ)dF (θ)− dU(θinf) +
[
1− F (θ̄∗n+1)

]
dU(θ̄∗n+1).
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As above, dU(θinf) = 0 maximizes the additional tax revenue. The per-
turbation argument guarantees incentive compatibility among types below
θ̄∗n+1. To avoid failures of incentives involving types above θ̄∗n+1 one can give
dU(θ̄∗n+1) to every such type above θ̄∗n+1. This costs [1−F (θ̄∗n+1)]dU(θ̄∗n+1) in
terms of tax resources, hence the result in Proposition 3 for this special case.

8 A parametric example

We now exhibit a specific parametrization of the economy where bunching
occurs for deterministic fiscal tools and tax randomization is socially useful.

Preferences are represented by the logarithmic utility function u(c, θ) =
ln (c+ θ) used in Example 3. The parameter θ is distributed according to a
generalized Weibull distribution.

Using (6) the optimal deterministic relaxed redistribution policy maxi-
mizes

V
(
θinf
)
=

∫
Θ

[
ln(c(θ) + θ)− c(θ)− m(θ)

c(θ) + θ

]
dF (θ). (12)

The after-tax income c∗(θ) that maximizes pointwise V (θinf) is a nonnegative
root of the first-order condition (c∗(θ) + θ)2 − (c∗(θ) + θ)−m(θ) = 0. There
is only one possible such root,

c∗(θ) =
1 + (1 + 4m(θ))1/2

2
− θ. (13)

The optimal deterministic after-tax income is c∗(θ) if this quantity is non-
increasing. Otherwise, i.e., if c∗(θ) is increasing, there is bunching in the
deterministic case. Thus bunching occurs occurs if and only if

m′(θ) > (1 + 4m(θ))1/2. (14)

The above inequality cannot be met for standard probability distributions, as
they have a decreasing Mills ratio, m′(θ) ≤ 0. It may however be satisfied for
well-chosen log-logistic, Weibull, and variants of Weibull distributions such
as generalized or power generalized Weibull commonly used in econometric
models for duration data. Where it holds true, c∗(θ) violates the second-
order monotonicity requirements for incentive compatibility. Our example
uses a generalized Weibull distribution (see Dimitrakopoulou, Adamidis, and
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Loukas (2007) for properties of this distribution). Its cumulative distribution
function is

F (θ) = 1− exp
[
1− (1 + λθb)a

]
for θ ≥ 0, with a, b and λ positive parameters. The Mills ratio m(θ) is
increasing for a < 1 and b ≤ 1.

We set a = 0.5, b = 0.05 and s = 0.5. The condition (14) for bunching
in the optimal deterministic policy is satisfied if and only if θ ≤ 19.9, which
corresponds to 22.7 percent of the population with the lowest types.

The optimal deterministic income tax schedule consists of a single income
pair (c̄∗, ȳ∗) offered to every type θ ≤ θ̄∗ while all the other types are assigned
the optimal relaxed income pair (c∗(θ), y∗(θ)). The social objective V (θinf)
thus is

θ̄∗∫
0

[
ln(c̄∗ + θ)− c̄∗ − m(θ)

c̄∗ + θ

]
dF (θ) (15)

+

+∞∫
θ̄∗

[
ln(c∗(θ) + θ)− c∗(θ)− m(θ)

c∗(θ) + θ

]
dF (θ).

Using the expression of c∗(θ) given in (13), the optimal threshold is such
that

c̄∗ = c∗
(
θ̄∗
)
=

1 +
(
1 + 4m

(
θ̄∗
))1/2

2
− θ̄∗ (16)

To characterize the amount of after-tax income c̄∗, we apply the integration
by parts formula and rewrite the contribution of types below θ̄∗ to the social
objective V (θinf) in (15) as

−
[
1− F

(
θ̄∗
)]

ln
(
c̄∗ + θ̄∗

)
+ ln c̄∗ − c̄∗F

(
θ̄∗
)
.

Solving for the first-order condition for c̄∗ to maximize this contribution,
which is a quadratic equation in c̄∗, the only positive root is

c̄∗ =
1− θ̄∗

2
+

1

2

√(
1− θ̄∗

)2
+

4θ̄∗

F (θ̄∗)
.

Replacing this expression of c̄∗ into (16) defines the optimal threshold θ̄∗.
Numerical computations (see the R code in Appendix B) yield c̄∗ = 4.02 and
θ̄∗ = 74.87, with F (θ̄∗) = 23.88 percent.

23



Following Remark 1, we now expose to random noise a subset of low
types among those facing the after-tax income c̄∗ in the deterministic income
tax schedule. Namely we set dv(θ) = dv > 0 for all θ ≤ θ̄, with θ̄ some
threshold type below θ̄∗, while dv(θ) = 0 for all θ > θ̄. With this variance
step-profile, the condition for socially useful randomness in redistribution
given in Proposition 3 can be re-expressed as

−F (θ̄)− 1− F (θ̄)

c̄∗ + θ̄

(
1− 1

2
(
c̄∗ + θ̄

))+
1

c̄∗

(
1− 1

2c̄∗

)
> 0. (17)

The shape of the left-hand side is depicted in Figure 1. It is 0 when evaluated
at θ̄ = 0 and decreasing for θ̄ close enough to 0, so that one should not set
random taxes on a too narrow subset of types close to θinf . For higher values
of θ̄, it is single-peaked, reaching its global maximum of 0.0265 for θ̄ = 73.83,
hence very close to θ̄∗ = 74.87. It takes positive values for all θ̄ ∈

[
9.76, θ̄∗

]
,

with F (9.76) = 7.33 percent.

Figure 1: Random redistribution with a generalized Weibull distribution

The figure depicts function of θ̄ that appears in the left-hand side of (17). It is drawn
for a generalized Weibull distribution with parameters a = 0.5, b = 0.05 and s = 0.5.
The threshold θ̄ is on the horizontal axis. See the R code in Appendix B for recovering
the figure. It is optimal to expose all agents with type θ below θ̄ if the function takes a
positive value when evaluated at θ̄. The vertical dotted line at θ̄ = 9.76 gives the least
value of the threshold such that the function reaches positive values. For readability
purposes, the figure does not represent the function for θ̄ above 20. The function is
actually single-peaked at takes positive values for θ̄ below θ̄∗ = 74.87, and negative
values for higher θ̄, so that it is not optimal to expose all agents to random taxation.
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We conclude that, in this example, introducing small random perturba-
tions on taxes designed for the bottom of the type distribution improves
upon the deterministic optimum. Namely, randomness should concern be-
tween at least the bottom 7.33 and at most 23.88 percent of types. Relying
on the interpretation of (9) as a change in collected tax following the in-
troduction of income risk, the highest amount of additional taxes would be
generated by subjecting almost all agents affected by bunching to random
perturbations, but not all of them. The highest social welfare gain that can
be achieved equals 0.0265 × λv income units. Since the less well-off get at
most ln(c̄∗ + θinf) = ln(4.02) units of before-tax income, this gain represents
a 0.0265/ ln(4.02) × λv share of the initial level of welfare. For λv = 1, i.e.,
a one-unit increase in the average transfer (25 percent of the initial after-tax
income), we find a modest welfare gain, with lower bound of 2 percent.

9 Conclusion

Our paper reexamines optimal income taxation in a Mirrlees setup with a
continuum of types of taxpayers. Our focus is on the choice between deter-
ministic versus random taxation. We have shown that the random alternative
is preferred only if the best deterministic policy implies a uniform treatment
of different types of taxpayers. Randomness then allows the government to
exploit taxpayers’ risk aversion and implement discriminatory tax treatment.

The existing literature following Hellwig (2007) suggests that rationing,
viewed as implying randomness in the allocation of goods designed for the
poor, can be justified as far as these agents display lower risk aversions.
However we expect a greater, not lower aversion to consumption risk among
the poor, those who have the highest marginal utility gain from consumption.
Our paper shows that stochastic redistribution can be socially useful even
though random noise bears on the most risk averse agents. In this respect,
it can be used to justify policies relying on rationing the less well-off part of
the population to improve its welfare. This may be especially relevant in the
case of housing or in the provision of public goods when recipients differ in
the availability of substitutes that are difficult to observe.3

3Our framework can accommodate applications to minimum wage and other forms of
rationing in the labor market discussed in Introduction by considering utilities linear in
after-tax, rather than before-tax income as in (1). Random noise then is on labor and
before-tax income.
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In a more narrowly fiscal perspective, the social acceptability of explicit
forms of randomization of taxes in the tax code is plausibly disputable. Non-
explicit randomization from administrative errors because of imprecise as-
sessment of before-tax income as in Stern (1982) or Slemrod (2019), make a
deterministic tax code consistent with small random income perturbations.
Actually, it is likely that such non-explicit forms of randomization bear on the
less well-off part of the population, as the most vulnerable usually fall into
several social benefit regimes. In the redistributive case, where these agents
have high risk aversion and high social importance, our results suggest that
it may be wasteful to correct these errors.

Two features in our analysis would be worth addressing in further work.
First, we considered the case of a Rawlsian planner, which magnifies ten-
sions from redistribution. A continuity argument suggests that the results
should remain unaffected for weighted utilitarian redistributive preferences
that place greater importance on agents who value consumption more. On
the other hand, the occurrence of bunching in the deterministic optimum
may be less plausible for weak redistribution motives, e.g., the unweighted
(Benthamite) utilitarian social welfare objective, implying low redistribution
made deterministically.

A second feature relates to the interplay between the extent of bunching
and optimal randomization. In our parametric example in Section 8, random
taxation applies to a subset of the agents affected by failures of monotonicity
requirements while redistribution should remain deterministic at the top of
the distribution. It may thus be that deterministic redistribution is more
suitable when a smaller portion of the population is affected by bunching.
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Appendices

A A Proof of Proposition 1

We first express the before-tax income of type θ as a function of her indirect
utility V (θ),

y(θ) = u (c∗, θ) + λS (c∗, θ) v(θ)− V (θ).

The expression of the indirect utility V (θ) obtains from using the first-order
necessary condition in Lemma 2 for incentive compatibility, which yields

U(θ) = U
(
θinf
)
+

θ∫
θinf

λS ′
θ (c

∗, z) v(z)dz,

so that

V (θ) = u (c∗, θ) + U
(
θinf
)
+

θ∫
θinf

λS ′
θ (c

∗, z) v(z)dz.

The feasibility constraint (2) reads∫
Θ

[c∗ + λv(θ)− y(θ)] dF (θ) = 0.

Replacing the before-tax income y(θ) with its expression in terms of V (θ),
with V (θ) given above, we find∫

Θ

[c∗ + λv(θ)− λS (c∗, θ) v(θ)] dF (θ)

+U
(
θinf
)
+

∫
Θ

θ∫
θinf

λS ′
θ (c

∗, z) v(z) dz dF (θ) = 0.

Using the integration by parts formula,

∫
Θ

θ∫
θinf

S ′
θ (c

∗, z) v(z) dz dF (θ) =

∫
Θ

m(θ)S ′
θ (c

∗, θ) v(θ) dF (θ),
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the feasibility constraint allows us to get the sub-utility U(θ) driving incen-
tives in the presence of small random tax perturbations for type θinf ,

U
(
θinf
)
= −

∫
Θ

[c∗ + λv(θ)− λS (c∗, θ) v(θ) +m(θ)λS ′
θ (c

∗, θ) v(θ)] dF (θ).

Social welfare is V
(
θinf
)
= u

(
c∗, θinf

)
+ U

(
θinf
)
, which is actually

u
(
c∗, θinf

)
−
∫
Θ

[c∗ + λϕ (c∗, θ) v(θ)] dF (θ),

with ϕ (c∗, θ) defined in Proposition 1.
The expression of social welfare in the absence of noise obtains by letting

v(θ) = 0 for all θ. It reduces to u
(
c∗, θinf

)
− c∗. This yields condition (9) in

Proposition 1 for socially useful random redistribution (recall that λ ≥ 0 for
the variance of the income to be non-negative). This concludes the proof.

B Detailed derivation of (11)

Applying the integration by parts formula, we have

θ∗∫
θinf

m(θ)S ′
θ(c

∗, θ) dF (θ) = [1− F (θ∗)]S(c∗, θ∗)−S(c∗, θinf)+

θ∗∫
θinf

S(c∗, θ) dF (θ).

Therefore,

θ∗∫
θinf

ϕ(c∗, θ) dF (θ) = −F (θ∗)− [1− F (θ∗)]S(c∗, θ∗) + S(c∗, θinf).

This is positive if and only if

S(c∗, θinf)− S(c∗, θ∗) > F (θ∗) [1− S(c∗, θ∗)] .

Since S(c∗, θ∗) < 1, this rewrites as

S(c∗, θinf)− S(c∗, θ∗)

1− S(c∗, θ∗)
> F (θ∗),

which is equivalent to (11).
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C R code for Section 8

a <- 0.5; b <- 0.05; s <- 0.5

FF <- function(x) 1 - exp (1-(1+s*x^b)^a)

ff <- function(x) {

ff <- (a*(1+s*x^b )^(a-1)*s*b*x^(b-1))

ff <- ff*exp (1-(1+s*x^b)^a)

ff

}

mm <- function(x) (1-FF(x)) / ff(x)

mmprime <- function(x) {

mmp <- - (a*b*(b-1)*s*x^(b-2)*(1+s*x^b)^(a-1))

temp <- a*b*s*x^(b-1)*(a-1)*s*b*x^(b-1)

mmp <- mmp - temp*( 1+s*x^b)^(a-2)

mmp <- mmp / (a*b*s*x^(b-1)*( 1+s*x^b)^(a -1))^2

mmp

}

bunch <- function(x) mmprime(x) - (1+4*mm(x))^(1/2)

xx <- seq (1e-10,1e3 ,1e-2)

plot (xx , bunch(xx))

# bunching occurs for xx such that bunch (xx) is positive

max (xx[bunch(xx) >=0]); FF(max(xx[bunch(xx) >=0]))

thetabar <- function(x) x+((1-x)^2+4*x/FF(x))^(1/2) -(1+4*mm(x))^(1/2)

plot (xx , thetabar(xx))

# threshold below which bunching occurs has thetabar = 0

min(xx[thetabar(xx) >=0]); FF(min(xx[thetabar(xx) >=0]))

theta <- min(xx[thetabar(xx) >=0])

theta

cbar <- (1-theta)/2+((1- theta )^2+4*theta/FF(theta ))^(1/2)/2

cbar

sfnum <- function(x) {

sf <- (1-FF(x))*(1-1/(2*(cbar+x)))/(cbar+x)

sf <- -FF(x)-sf+(1-1/(2*cbar))/cbar

sf

}
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sumphi <- function(x) sfnum(x)-sfnum(1e-10) # sumphi is 0 at 1e-10

xx <- seq (1e-10, theta , 1e-1)

max(sumphi(xx)); xx[sumphi(xx)==max(sumphi(xx))]

sumphi(theta)

min(xx[sumphi(xx) >0]); FF(min(xx[(xx) >0]))

# Figure exported in the main text

xx <- seq(1e-10, 2, 1e-5)

plot(xx , sumphi(xx), type="b", xlim =c(-0.5,20), ylim =c( -0.1 ,0.03))

xx <- seq(2,20,1e-3)

points(xx, sumphi(xx), type ="b")

abline(h=0, col="red", lty="dotted")

abline(v= min(xx[sumphi(xx)>0]), lty ="dotted")
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