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One usually identifies bubble solutions to linear rational expectations models by extra
components (irrelevant lags) arising in addition to market fundamentals. Although there
are still many solutions relying on a minimal set of state variables, i.e., relating in
equilibrium the current state of the economic system to as many lags as initial conditions,
there is a conventional wisdom that the bubble-free (fundamentals) solution should be
unique. This paper examines the existence of endogenous stochastic sunspot fluctuations
close to solutions relying on a minimal set of state variables, which provides a natural test
for identifying bubble and bubble-free solutions. It turns out that only one solution is
locally immune to sunspots, independently of the stability properties of the
perfect-foresight dynamics. In the standard saddle-point configuration for these dynamics,
this solution corresponds to the so-called saddle stable path.
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1. INTRODUCTION

It is now well known that the rational expectations hypothesis generally does
not pick out a unique equilibrium path. Consequently, one usually introduces into
analysis additional selection devices that give an account of the relevance of special
paths. The aim of such criteria is often to rule out bubble solutions, that is, paths
that are determined in particular by traders’ expectations. Although there are cases
in which the identification of bubble solutions and bubble-free (fundamentals)
solutions is unquestionable, a sampling of the literature [Flood and Garber (1980),
Burmeister et al. (1983), and, more recently, McCallum (1999), among others]
suggests that there is still no agreement on what should be a bubble. Thus, the
purpose of the present paper is to progress toward defining bubble and bubble-free
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172 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

solutions in linear economies in which agents forecast only one period ahead, and
in which the number of predetermined variables is arbitrary, but fixed.

In the case of explicit justifications, the most often used criterion is that of sta-
bility or nonexplosiveness of endogenous variables [Blanchard and Kahn (1980),
Blanchard and Fischer (1987), and Sargent (1987)]. From a practical point of view,
attention typically is restricted to a particular configuration in which this criterion
provides a unique outcome, namely, the so-called saddle-point configuration for
the perfect-foresight dynamics, characterized by a number of stable roots that is
equal to the number of initial conditions (the number of predetermined variables).
More precisely, the model features a continuum of paths where the endogenous
variable explodes toward infinity and only one saddle stable path where it remains
bounded and even converges toward the stationary state. The dynamics restricted
to the saddle stable path make the current state dependent upon a number of lags
that is equal to the number of predetermined variables. Because of this property,
it is usually asserted that market fundamentals entirely determine the actual path
of the economy and expectations do not play a role in this equilibrium. However,
the stability criterion fails to select a single solution as soon as there are more
stable roots than predetermined variables, that is, in the so-called indeterminate
configuration for the perfect-foresight dynamics.

The minimal-state variable (MSV) criterion from McCallum (1983) is conceived
to apply also in this case. It recommends the elimination of solutions in which the
current state relies on a number of lags larger than the number of predetermined
variables, that is, solutions that display an extra component arising in addition to
the components that reflect market fundamentals. Such solutions are said to be
with a bubble, given that traders’ expectations necessarily matter. There is a large
agreement on ruling out these solutions and focusing attention on the solutions
with a minimum number of lags, that is, the solutions such that the number of lags
is equal to the number of predetermined variables. However, in general models,
there still remain many solutions involving a minimal number of lags, whereas
there is a conventional wisdom that there should be a unique solution, termed
bubble-free. Hence, an additional device is needed to identify only one solution.
McCallum (1999) proposes then to introduce a subsidiary principle that is, at first
sight, unrelated to the definition of a bubble in general models [see d’Autume
(1990) for a discussion]. As McCallum (1999) emphasizes, such an augmented
MSV criterion “identifies a single solution that can reasonably [emphasis added]
be interpreted as the unique solution that is free of bubble components, i.e., the
fundamentals solution.” Precisely, this MSV criterion requires that the equilibrium
path involve a minimal number of lags, whatever the values of the exogenous
parameters are, that is, even in degenerate cases in which some of them are equal
to zero. In linear models, it appears that this condition always selects a unique
solution. In particular, in the saddle-point configuration, the MSV solution is the
equilibrium path that corresponds to the saddle stable path. In what follows, we call
“McCallum’s conjecture” the claim that the MSV solution is the (unique) solution
deserving to be called bubble-free (or the fundamentals solution).
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BUBBLE-FREE SOLUTIONS 173

To discuss this conjecture, we study the existence of self-fulfilling sunspot-
like beliefs, the support for which is very close to solutions with a minimal
number of lags. Namely, we consider that the existence of such sunspot equi-
libria accounts for expectations that matter close to these solutions, and there-
fore, to deserve to be bubble-free, a solution should be free of any neighboring
sunspot equilibria. Our results are then in accordance with McCallum’s conjec-
ture: Sunspot fluctuations never arise close to the MSV solution, and they may
occur arbitrarily close to any other solution that displays a minimal number of
lags. These results are shown to hold in general (univariate) linear models where
agents forecast only one period ahead, and with an arbitrary number L ≥ 0 of pre-
determined variables. In this framework, the dynamics with perfect foresight are
locally governed by (L + 1) perfect-foresight (growth rates) roots λ1, . . . , λL−1

with |λ1| < · · · < |λL+1|. Hence, there are (L + 1) solutions where the current
state depends on only L lags. Each one corresponds to an equilibrium path that
belongs to the eigensubspace spanned by L eigenvectors associated with L among
(L + 1) perfect-foresight roots; that is, all of these paths are defined by only L
coefficients. In particular, in the saddle-point configuration (|λL | < 1 < |λL+1|),
the saddle stable path is governed by the L roots of lowest modulus λ1, . . . , λL . In
this configuration as well as in any other, McCallum’s (1999) conjecture is that this
latter solution is actually the unique bubble-free solution; that is, beliefs are not
relevant in this solution but they should generically matter for paths corresponding
to L other roots (and including, in particular, the root of largest modulus λL+1).
To discuss this assertion, we assume that agents observe an exogenous sunspot
process that does not affect fundamentals, and that they hold beliefs that are corre-
lated to the sunspot process and consist in randomizing over paths arbitrarily close
to solutions with L lags, that is, over paths defined by L coefficients arbitrarily
close to the L coefficients that define solutions with a minimal number of lags.
We show that (i) beliefs can never be self-fulfilling in the neighborhood of the
path that is governed by the L roots of lowest modulus λ1, . . . , λL and (i i) for any
other solution with a minimal number of lags, there always exist sunspot processes
ensuring that some beliefs are self-fulfilling.

This paper is organized as follows: In Section 2, we present our results in the
simple benchmark framework also considered by McCallum (1999), where L = 1.
Then, in Section 3, we tackle the general case in which L ≥ 0 is arbitrary. A brief
summary of the results is given in Section 4.

2. PRELIMINARY EXAMPLE

The reduced form that we first consider supposes that the current equilibrium state
is a scalar xt linked with both the common forecast of the next state E(xt+1 | It )

(where E denotes the mean operator and It the information set of agents at date t)
and the predetermined state xt−1 through the following temporary equilibrium map:

γ E(xt+1 | It ) + xt + δxt−1 = 0, (1)
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174 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

where the real numbers γ and δ represent the relative weights of future and past,
respectively. Equation (1) stands for a first-order approximation of temporary
equilibrium dynamics in a suitable neighborhood V (x̄) of a locally unique station-
ary state x̄ whose value is normalized to zero. This formulation is general enough to
encompass equilibrium conditions of simple versions of overlapping generations
economies with production [Reichlin (1986)], and those of infinite-horizon models
with cash-in-advance constraints [Woodford (1986), Bosi and Magris (1997)]. It is
also commonly used as a benchmark case in the temporary equilibrium literature
[Grandmont and Laroque (1990, 1991), Grandmont (1998)]. It serves the purpose
of McCallum (1999). In this model, the local perfect-foresight dynamics rely on
two local perfect-foresight roots, λ1 and λ2 (with |λ1| < |λ2| by definition); that
is, there are two paths along which the current state xt is determined by only one
lag xt−1 through a constant growth rate (factor) xt/xt−1 equal to either λ1 or λ2. In
such paths, traders’ forecasts do not a priori matter because the number of lags that
affect the current state is equal to the number of predetermined variables. The path
corresponding to λ1 (the λ1 path, for convenience) governs the perfect foresight
restricted to the saddle stable branch in the saddle-point case (|λ1| < 1 < |λ2|). The
issue is whether this λ1 path is indeed the only one that is bubble-free, as claimed by
McCallum (1999). To tackle this problem, we build a sunspot process over growth
rates arbitrarily close to the perfect-foresight roots λ1 and λ2. The existence of the
sunspot equilibria so defined provides a clear method for defining bubbles. Actu-
ally, it turns out that such expectations-driven fluctuations do not arise close to the
λ1 path but that they do occur close to the λ2 path, independently of the stability
(determinacy) properties of the local perfect-foresight dynamics. As a result, the
λ1 path is the single solution of model (1) that can be termed bubble-free.

2.1. Deterministic Rational Expectations Equilibria

A local perfect-foresight equilibrium is a sequence of state variables {xt }∞t=−1
associated with the initial condition x−1, and such that the recursive equation (1)
with E(xt+1 | It ) = xt+1 holds at all times:

γ xt+1 + xt + δxt−1 = 0. (2)

Consequently, the current state may be related to either one or two lags in (2).
In the latter case, the solution is xt = −(1/γ )xt−1 − (δ/γ )xt−2. It displays more
lags than predetermined variables. It is, accordingly, a bubble solution. On the
contrary, the state variable is obedient in the former case to the law of motion
xt = βxt−1, where β satisfies γβ2xt−1 + βxt−1 + δxt−1 = 0 for any xt−1 ∈ V (x̄);
that is, β is a root λi (i = 1, 2) of the characteristic polynomial associated with
(2). Throughout the paper, we assume that λ1 and λ2 (with |λ1| < |λ2|) are real.
For these two solutions, xt = λi xt−1 (i = 1, 2), the number of lags is equal to the
number of predetermined variables, and the fundamentals (γ, δ) and the initial
condition x−1 are then sufficient to determine the actual path of the economy;
that is, forecasts play a priori no role. Neither of these two paths has an a priori
special characteristic that would justify labeling it as bubble-free. Nevertheless the
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BUBBLE-FREE SOLUTIONS 175

λ1 path is usually presumed to be the unique solution where bubbles are absent.
In particular, this claim holds true according to the MSV criterion of McCallum
(1999). Namely, in the case δ = 0—that is, if no predetermined variables enter the
model—λ1 reduces to 0 (and the λ1 path reduces to the steady state xt = x̄), whereas
λ2 does not. This implies that the current state is not linked to past realizations
along the λ1 path, but it is along the λ2 path. The λ1 path is therefore the only
solution displaying a minimal number of lags whatever the values γ of δ are; this
is precisely the definition of the MSV solution.

2.2. Stochastic Sunspot Rational Expectations Equilibria

The purpose of this section is to show that traders’ beliefs do not matter (do matter)
in the immediate vicinity of the λ1 path (λ2 path) when δ 
= 0, which provides a
simple basis for the choice of bubble-free trajectories. We assume that agents
observe a public exogenous sunspot signal with two different states, st = 1, 2 at
every date t ≥ 0. The signal follows a discrete-time Markov process with stationary
transition probabilities. Let � be the two-dimensional transition matrix whose ss ′th
entry πss ′ is the probability of sunspot signal s ′ at date t + 1 when the signal is s
at date t . Agents believe that rates of growth are perfectly correlated with the
exogenous stochastic process. Let βs(s = 1, 2) be the guess of the rate of growth
whenever signal s is observed at the outset of a given period; that is, agents deduce
from the occurrence of signal s at date t that xt should be determined according
to the following law of motion:

xt = βs xt−1. (3)

At date t , the information set includes all past realizations of the state variable
and of the sunspot signal; that is, It = {xt−1, . . . , x−1, st , . . . , s0}. Although It

does not contain xt , we will consider that agents’ expectations at date t are made
conditionally to xt ; that is, agents believe that xt+1 will be equal to βs ′ xt with
probability πss ′ . This way of forming expectations is made for technical simplicity.
It influences none of our results, which bear on stationary equilibrium only (as
defined later); that is, at equilibrium, beliefs are self-fulfilling and the actual xt is
always equal to its expected value at date t (i.e., βs xt−1). As a result, the expected
value E(xt+1 | It ) is written

xe
t+1 = E(xt+1 | st = s) =

[
2∑

s ′=1

πss ′βs ′

]
xt ≡ β̄s xt , (4)

where β̄s represents the (expected) average growth rate between t and (t + 1)
conditionally to the event st = s. The actual dynamics are obtained by reintroducing
expectations (4) into the temporary equilibrium map (1). If s occurs at date t , then
the actual law of motion of the state variable satisfies

γ β̄s xt + xt + δxt−1 = 0

⇔ xt = −[δ/(1 + γ β̄s)] xt−1 ≡ �s(β1, β2)xt−1. (5)
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176 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

We are now in a position to define a two-state sunspot equilibrium on growth
rate, hereafter denoted SSEG(k, L), where k is the number of different signals of
the sunspot process and L represents the number of lags taken into account by
agents. In this section, we thus have k = 2 and L = 1.

DEFINITION 1. A two-state stationary sunspot equilibrium on growth rate
[denoted an SSEG(2, 1)] is a pair (β, �) where β is a two-dimensional vector
(β1, β2) and � is the two-dimensional stochastic matrix that triggers beliefs of
traders, such that (i) β1 
= β2 and (ii) βs = �s(β1, β2) for s = 1, 2.

At an SSEG(2, 1), the expected growth rate βs used in (3) is self-fulfilling
whatever the current sunspot signal s is; that is, βs coincides with the actual growth
rate �s(β1, β2) given in (5). The economy will indurate endogenous stochastic
fluctuations as soon as condition (i) is satisfied. In the case in which this condition
fails, one can speak of a degenerate SSEG(2, 1). Degenerate SSEG (2, 1) are pairs
((λs, λs), �) where λs is a perfect foresight growth rate and the transition matrix
� is arbitrary: growth rate remains constant through time and beliefs are self-
fulfilling, whatever the sunspot process is.

Formally speaking, we shall say that a neighborhood of a SSEG(2, 1), de-
noted ((β1, β2), �), is a product set V ×M2, where V is a neighborhood of
(β1, β2) for the natural product topology on R2 and M2 is the set of all the
2-dimensional stochastic matrices �. Then, we shall say that another SSEG
(2, 1), denoted ((β ′

1, β
′
2), �

′), is in the neighborhood of ((β1, β2), �) [respec-
tively, (λs, λs ′)] whenever the vector (β′

1, β
′
2) stands close to (β1, β2) [(λs, λs ′)]

and whatever the matrices � and �′ are. The next result is from a study of the
existence of SSEG(2, 1) in the neighborhood of a λs path (s = 1, 2), that is, such
that (β1, β2) stands close enough to (λs, λs).

PROPOSITION 1. Letγ 
= 0 and δ 
= 0. Then there is a neighborhood of (λ1, λ1)

in which no SSEG(2, 1) exist but SSEG(2, 1) do exist in every neighborhood of
(λ2, λ2).

Proof. Let us define the map � from R2 onto R2 in the following way:

(β1, β2) → �(β1, β2) = (�1(β1, β2) − β1, �2(β1, β2) − β2),

so that an SSEG(2, 1) is characterized by �(β1, β2) = (0, 0) and β1 
= β2. Let
D�(β1, β2) be the two-dimensional Jacobian matrix of the map � calculated
at point (β1, β2). Because λ1 and λ2 are the roots of the characteristic polyno-
mial corresponding to (2), γ /δ = 1/λ1λ2. This identity and some computations
lead to

D�(λs, λs) = λ2
s

λ1λ2
� − I2 for s = 1, 2,

with I2 the two-dimensional identity matrix.
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BUBBLE-FREE SOLUTIONS 177

Notice that �(λs, λs) = (0, 0) for every �. Recall that the two eigenvalues of �

are (π11 + π22 − 1) and 1 [see, e.g., Chung (1967)]. The eigenvalues of D�(λs, λs)

are therefore

µ1 = λ2
s

λ1λ2
(π11 + π22 − 1) − 1.

µ2 = λ2
s

λ1λ2
− 1.

The determinant of the Jacobian is det D�(λs, λs) ≡ µ1µ2. In the generic case,
λ1 
= λ2, one has µ2 
= 0, and therefore

det D�(λs, λs) = 0 ⇔ π11 + π22 − 1 = λ1λ2

λ2
s

.

This last condition reduces to π11 + π22 − 1 = λ2/λ1 if λs = λ1, and π11 + π22 −
1 = λ1/λ2 ifλs = λ2. Noticing that |π11 + π22 − 1| < 1 shows that det D�(λs, λs)=
0 is obtained for some matrices � if and only if s = 2.

For the case λs = λ1, the proposition results then from applying the implicit
functions theorem to each point ((λ1, λ1), �). The precise argument requires the
compacity of the set of stochastic matrices � (because a matrix � is characterized
by π11 and π22, this set can be identified for instance to [0, 1]2). It is as follows:
for every matrix �0, there are open neighborhoods U�0 of (λ1, λ1) and V�0 of �0

and a smooth function T�0 from V�0 onto U�0 such that

∀(β1, β2) ∈ U�0 , ∀ � ∈ V�0 , ��(β1, β2) = 0 ⇔ (β1, β2) = T�0(�). (6)

By compacity of the set of stochastic matrices �, there is a finite set C of �0

such that ∪�0∈C V�0 is the whole set of stochastic matrices. Hence, the family of
functions T�0 for �0 ∈ C , uniquely defines a smooth function (β1, β2) = T (�) on
the whole set of stochastic matrices onto the intersection ∩�0∈CU�0 . One has

∀(β1, β2) ∈ ∩�0∈CU�0 , ∀ �, ��(β1, β2) = 0 ⇔ (β1, β2) = T (�).

Given that ��(λ1, λ1) = 0 holds for every �, T (�) is simply equal to (λ1, λ1)

for every �, and there is no other (β1, β2) in ∩�0∈CU�0 satisfying ��(β1, β2) = 0
for some �. Because C is finite, this set ∩�0∈CU�0 is an (open) neighborhood of
(λ1, λ1).

For the case λs = λ2, there are some � such that det D�(λ2, λ2) = 0. It follows
then from standard local bifurcation theory that there exist some matrices � and
(nondegenerate) SSEG(2, 1) in the neighborhood of (λ2, λ2) [see Chiappori et al.
(1992) for a general argument].

Accordingly, the λ1 path should be considered as the single bubble-free solu-
tion of the model, independently of the properties of the local perfect-foresight
dynamics, even in the indeterminate case for this dynamics (|λ1| < |λ2| < 1). The
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178 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

FIGURE 1. Stochastic fluctuations of the state variable induced by the sunspot equilibria,
where s0 = s1 = s2 = 1 and s3 = 2.

restrictions γ 
= 0 and δ 
= 0 are needed in Proposition 1. Otherwise, actual growth
rates are independent of sunspot signals [see equation (5)]. However, it actually is
not stringently given, first, that γ 
= 0 merely ensures that expectations matter and,
second, that the bubble-free solution is easily identified in the case δ = 0 (this is
the steady state).

An example of stochastic fluctuations of the state variable induced by the sunspot
equilibrium is depicted in Figure 1 in the hypothetical case where s0 = s1 = s2 = 1
and s3 = 2. This figure highlights the fact that the state variable is pulled out of
V (x̄) in the case |λ2| > 1. Consequently, the stability condition |λ2| < 1 should
be met as far as we are concerned with situations in which the state variable is
bounded [e.g., to ensure that it remains in V (x̄)]. It allows us to restore the con-
ventional link between the existence of sunspot fluctuations and the indeterminacy
of the stationary state that appears in models without predetermined variables [see
Chiappori et al. (1992), Drugeon and Wigniolle (1994), or Shigoka (1994) among
many others]. It implies, however, that fluctuations will vanish in the long run.

The next result is concerned with the issue of whether the bubble-free role of
the λ1 path is robust to a slight change in the traders’ beliefs. We now precisely
consider that agents randomize over the two perfect-foresight roots λ1 and λ2; that
is, they hold beliefs (β1, β2) in the neighborhood of (λ1, λ2) [or (λ2, λ1)]. We show
that no such beliefs are self-fulfilling as soon as the sunspot state associated with
the expected growth rate β1 near λ1 is persistent enough, that is, π11 and (1 − π22)

are large enough. Without loss of generality, we turn our attention to SSEG(2, 1)
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BUBBLE-FREE SOLUTIONS 179

in the neighborhood of (λ1, λ2) only. The case in which the SSEG(2, 1) is close to
(λ2, λ1) would be treated in a similar way, simply by changing indexes.

PROPOSITION 2. There exist a neighborhood of (π11, π22) = (1, 0) and a
neighborhood of (λ1, λ2) such that there is no SSEG(2, 1) in the neighborhood
of (λ1, λ2) associated with a sunspot process with transition probabilities in the
neighborhood of (π11, π22) = (1, 0).

Proof. Using the two identities, λ1λ2 = δ/γ and λ1 + λ2 = −1/γ , it is readily
verified that the Jacobian matrix D�(λ1, λ2) of the map � calculated at point
(λ1, λ2) is equal to

D�(λ1, λ2) =
(

ω(λ1, λ2, π11)π11 − 1 ω(λ1, λ2, π11)(1 − π11)

ω(λ2, λ1, π22)(1 − π22) ω(λ2, λ1, π22)π22 − 1

)
,

where ω(λ1, λ2, πss) is

ω(λ1, λ2, πss) = λ1λ2/[(1 − πss)λ1 + πssλ2]2.

The map ω is well defined when πss is in the neighborhood of 0 or 1. For π11 =
1 and π22 = 0, one has �(λ1, λ2) = 0 and some computations show that det
D�(λ1, λ2) = 1 − λ1/λ2. Then, in the generic case λ1 
= λ2, det D�(λ1, λ2) 
= 0,
and the implicit functions theorem applied at (λ1, λ2) with π11 = 1 and π22 = 0
shows that there exist neighborhoods U of (λ1, λ2) and V of (π11, π22) = (1, 0)

such that, for every matrix � with transition probabilities in V , the only zero of ��

in U is (λ1, λ2). In other words, there do not exist SSEG(2, 1) in the neighborhood
of (λ1, λ2) associated with a matrix � with transition probabilities in V .

Figure 2 gives an example of stochastic fluctuations of the state variable that
are induced by the sunspot equilibrium on growth rate described in Proposition 2.
Here, we set s0 = 1 (so that x0 = β1x−1), s1 = 2, and s2 = 1.

A sequence of state variables sustained by some SSEG(2, 1) described in Propo-
sition 2 remains in V (x̄) as soon as |λ2| < 1, that is, in the indeterminate config-
uration for the perfect-foresight dynamics, and it will be pulled out of V (x̄) with
probability 1 if |λ1| > 1, that is, in the so-called source determinate configuration
for these dynamics. The next result is obtained to provide a condition that ensures
stability in the saddle-point case. Given the stochastic framework under considera-
tion, the stability concept is a statistic criterion ensuring that, in the long run, xt re-
mains in the neighborhood of the steady state x̄ with an arbitrarily high probability.

PROPOSITION 3. Consider an SSEG(2, 1), denoted (β, �), that sustains a
sequence of stochastic realizations {xt }+∞

t=−1. It is called “stable” if and only if, for
every ε > 0, there exists a date T such that P (∀ t ≥ T, |xt − x̄ | ≤ ε) ≥ 1 − ε. Let qs

be the long-run probability of the signals s (s = 1, 2) associated with the Markov
transition matrix �. Then an SSEG(2, 1) is stable if and only if |βq1

1 β
q2
2 | < 1. If

this stability condition holds true, then endogenous stochastic fluctuations of the
state variable are vanishing asymptotically; that is, P (lim xt = x̄) = 1.
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180 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

FIGURE 2. Stochastic fluctuations of the state variable that are induced by the sunspot
equilibrium on the growth rate described in Proposition 2.

Proof. For the case |βq1
1 β

q2
2 | 
= 1, the result comes from Theorem I.15.2 in

Chung (1967). Let us consider a two-state ergodic Markov process with state
space {ln |β1|, ln |β2|} and with transition matrix �. Applying the theorem with
f = Identity gives

P

[
lim

1

t

t∑
τ=0

ln |βτ | = q1 ln β1 + q2 ln β2

]
= 1.

Because ln |xt/x−1| =
∑t

τ=0 ln |βτ |, one obtains

P

[
lim

1

t
ln |xt/x−1| = ln

∣∣βq1
1 β

q2
2

∣∣] = 1.

If |βq1
1 β

q2
2 | < 1, then P[lim ln |xt/x−1| = −∞] = 1. Hence, P[lim |xt | = 0] = 1.

Otherwise, |βq1
1 β

q2
2 | > 1 and P[lim ln |xt/x−1| = +∞] = 1. Now, P[lim |xt | =

+∞] = 1. For the case β
q1
1 β

q2
2 = 1, the result follows from the central limit theorem

for Markov chains [Chung (1967) Theorem 1.16.1]. Let us consider the stochas-
tic variable Yn defined by Yn = ∑

tn≤t<tn+1
ln |βs |, where tn is the date of the nth

return to the state ln |β1|. The condition q1 ln β1 + q2 ln β2 = 0 implies E(Yn) = 0.
As E(Y 2

n ) differs from zero, Theorem I.14.7 in Chung (1967) is applied to get the
asymptotic property
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lim
t→+∞ P

(
1

t

t∑
τ=0

ln |βτ | >
√

Bt

)
> 0,

where the constant B = q1 E(Y 2
n ) is independent of n according to Section I.15 in

Chung (1967). Considering again ln |xt/x−1| =
∑t

τ=0 ln |βτ | proves the result.

3. GENERAL FRAMEWORK

We now deal with general economies where the current state depends on the
(common) forecast of the next state and also on L ≥ 1 predetermined variables
through the following map:

γ E(xt+1 | It ) + xt +
L∑

l=1

δl xt−l = 0, (7)

where parameter δl (1 ≤ l ≤ L) represents the relative contribution to xt of the
predetermined state of period t − l. The dynamics with perfect foresight now
involve (L + 1) perfect-foresight roots λ1, . . . , λL+1 (with |λ1| < · · · < |λL+1|). We
shall concentrate attention on equilibrium paths along which the number of lags
that influence the current state is equal to the number L of predetermined variables,
that is, paths defined by L coefficients only. As a consequence such paths have
a priori no special characteristics that would justify the label bubble-free. Then, the
issue is whether the path corresponding to the L perfect-foresight roots of lowest
modulus λ1, . . . , λL (that is the one that corresponds to the saddle stable path in the
saddle-point case |λL | < 1 < |λL+1|) still deserves to be considered as the unique
bubble-free solution. According to McCallum’s (1999) MSV criterion, this is the
case because it is the only solution that always displays a minimal number of lags,
even in the degenerate case δ1 = · · · = δL = 0 (this path then reduces to the steady
state xt = x̄). To answer this question as we did in the preceding section, we build
sunspot equilibria over L-dimensional vectors whose components stand arbitrarily
close to the L coefficients that define each path with L lags. It turns out that the
solution corresponding to the L perfect-foresight roots of lowest modulus is the
unique solution that has no sunspot equilibrium in its neighborhood, independently
of the properties of the local dynamics with perfect foresight.

3.1. Deterministic Rational Expectations Equilibria

The state variable perfect-foresight dynamics in V(x̄) are related to the (L + 1)

perfect-foresight roots λ1, . . . , λL+1 of the characteristic polynomial

Px (x) = γ x L+1 + x L +
L∑

l=1

δl x
L−l ,
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182 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

corresponding to (7) under the perfect-foresight hypothesis E(xt+1 | It ) = xt+1,
namely,

γ xt+1 + xt +
L∑

l=1

δl xt−l = 0. (8)

We assume again that the roots of Px are real, with |λ1| < · · · < |λL+1|. A local
perfect-foresight equilibrium is a sequence of state variables {xt }∞t=−L associated
with the initial condition (x−1, . . . , x−L) ∈ V (x̄) × · · · × V (x̄) and such that (8)
holds at each period. Solutions where the current state depends on (L + 1) lags in
equilibrium, namely,

xt = −(1/γ )xt−1 −
L∑

l=1

(δl/γ )xt−1−l ,

are bubble solutions since beliefs matter at date t = 0. In what follows, we focus
on solutions with only L lags. They are such that when traders hold for sure that
the law of motion,

xt =
L∑

l=1

βl xt−l , (9)

governs the state variable behavior for every xt−l (l = 1, . . . , L) in V (x̄) and every
t , and when traders consequently form their forecasts, that is,

E(xt+1 | It ) =
L∑

l=1

βl xt+1−l , (10)

then the actual dynamics make their initial guess self-fulfilling. These actual
dynamics occur once (10) is reintroduced into (7):

xt = −
L∑

l=1

[(δl + γβl+1)/(1 + γβ1)] xt−l , (11)

with the convention that βL+1 = 0. Then, beliefs (9) are self-fulfilling whenever
(9) and (11) coincide; that is,

βl = −(δl + γβl+1)/(1 + γβ1) (12)

for l = 1, . . . , L . Solutions of (12) will be called stationary extended growth rates
[henceforth, stationary EGR(L)], and denoted β̂b = (β̂b

1 , . . . , β̂b
L) with the conven-

tion that β̂b governs the perfect-foresight dynamics restricted to the L-dimensional
eigenspace corresponding to all the perfect-foresight roots butλb (b = 1, . . . , L +1).
The expression of stationary EGR(L) is given by Gauthier (1999). For the sake of
completeness, it is restated in the next Lemma.
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LEMMA 1. Assume that the characteristic polynomial Px corresponding to
the (L + 1)th order difference equation (8) admits (L + 1) real and distinct roots
λb, 1 ≤ b ≤ L + 1. Let the (L + 1)-dimensional eigenvector ub, 1 ≤ b ≤ L + 1, be
associated with λb. Finally, let Wb, 1 ≤ b ≤ L + 1, be the L-dimensional eigensub-
space spanned by all the eigenvectors except ub. The perfect-foresight dynamics
of the state variable restricted to Wb are written as

xt =
L∑

l=1

β̂b
l xt−l ,

where the lth entry β̂b
l of the stationary EGR(L) β̂

b
is

β̂b
l = (−1)l+1

∑
1≤ j1<···< jl≤L+1

(λ j1 · · · λ jl ) f or all jz 
= b, z = 1, . . . , l.

Proof. We first transform the dynamics (8) into a vector first-order difference
equation,

xt+1 = Txt ,

where T is the companion matrix associated with Px and xt ≡ (xt , . . . , xt−L)T

(the symbol T represents the transpose of the vector). One can easily check
that the (L + 1) eigenvalues of the (L + 1)-dimensional matrix T are the perfect-
foresight roots λb, 1 ≤ b ≤ (L + 1), and that each λb is associated with the (L + 1)-
dimensional eigenvector ub,

ub ≡ (
λL

b , λL−1
b , . . . , 1

)T
.

For every b, the perfect-foresight trajectory that is restricted to Wb is such that xt

is a linear combination of all the ub′ except ub; that is, det (xt , P−b) = 0 where P−b

is the (L + 1) × L matrix whose columns are all the ub′ except ub. Developing the
determinant, this latter identity can be rewritten as

xt =
L∑

l=1

al xt−l ,

where each coefficient al is (−1)l+1�l/�0 and the �l are minors of the (L + 1)-
dimensional matrix (xt , P−b). Notice [see Arnaudiès and Fraysse (1987)] that �0

is the determinant of Vandermonde and �l = σl(λ−b)�0 where σl(λ−b) is the
lth elementary symmetric polynomial evaluated at λ−b (the L-dimensional vector
whose components are all the perfect-foresight roots except λb):

σl(λ−b) =
∑

1≤ j1<···< jl≤L+1
jl 
=b

λ j1λ j2 · · · λ jl . (13)

The result follows.

Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100501010264
Downloaded from https:/www.cambridge.org/core. Bibliotheque de la Sorbonne, on 13 May 2017 at 15:48:32, subject to the Cambridge

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100501010264
https:/www.cambridge.org/core


184 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

There are (L + 1) stationary EGR(L) associated with (L + 1) different L-
dimensional eigensubspaces of the (L + 1)-dimensional local perfect-foresight
dynamics (8). We now study whether the β̂L+1 path is still the unique bubble-
free solution by constructing sunspot equilibria over L-dimensional vectors that
stand arbitrarily close to each stationary EGR(L) of the economy. This β̂L+1

path is associated with the L-dimensional eigenspace corresponding to all the
perfect-foresight roots except λL+1, and it governs the saddle stable path in the so-
called saddle-point configuration for the perfect-foresight dynamics (|λL | < 1 <

|λL+1|).

3.2. Stochastic Sunspot Rational Expectations Equilibria

Consider that agents observe a k-state discrete-time Markov process associated
with a k-dimensional stochastic matrix �. When the signal is s at the outset of
period t , that is, st = s (s = 1, . . . , k), agents believe that the current state is linked
to the L previous states according to the following law of motion:

xt =
L∑

l=1

βs
l xt−l . (14)

In other words, they believe that the current extended growth rateβ(t) = (β1(t), . . . ,
βL(t)) is equal to some L-dimensional vector βs = (βs

1, . . . , β
s
L), and they deduce

from the occurrence of signal s that the next extended growth rate β(t + 1) will
be equal to βs ′

(s ′ = 1, . . . , k) with probability πss ′ , where πss ′ is the ss ′th entry
of �. Therefore, their price expectation is written as

E(xt+1 | It ) =
k∑

s ′=1

πss ′

L∑
l=1

βs ′
l xt+1−l =

L∑
l=1

k∑
s ′=1

πss ′βs ′
l xt+1−l ≡

L∑
l=1

β̄s
l xt+1−l ,

where β̄s
l represents the average weight of xt+1−l in the forecast rule when st = s.

The information set It must accordingly be formed by the current sunspot signal
st = s and the L previous realizations xt−l (l = 1, . . . , L). The actual dynamics in
state st = s are obtained by reintroducing forecasts into the temporary equilibrium
map. With the convention that βs

L+1 = 0, one gets

γ

L∑
l=1

β̄s
l xt+1−l + xt +

L∑
l=1

δl xt−l = 0

⇔ xt = −
L∑

l=1

[(
γ β̄s

l+1 + δl
)/(

γ β̄s
1 + 1

)]
xt−l ≡

L∑
l=1

�l
(
β̄s

1, β̄
s
l+1

)
xt−l . (15)

DEFINITION 2. A SSEG(k, L) is a kL-dimensional vector β = (β1, . . . ,βk)

where βs is an L-dimensional vector (βs
1, . . . , β

s
L), and a k-dimensional stochas-

tic matrix � such that (i) there are s and s ′ such that βs 
= βs ′
, and (i i) βs

l =
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BUBBLE-FREE SOLUTIONS 185

�l(β̄
s
1, β̄

s
l+1) for l = 1, . . . , L and s = 1, . . . , k, with the convention that βs

L+1 = 0
for every s.

An SSEG(k, L) is, accordingly, a k-state sunspot equilibrium over EGR(L).
This is a situation in which every initial guess βs

l in (14) coincides with the actual
realization �l(β̄

s
1, β̄

s
l+1) in (15), whatever the current sunspot signal s is; that is,

beliefs about EGR(L) are self-fulfilling. The (L + 1) stationary EGR(L) may be
called degenerate SSEG(k, L) because, for any �, only condition (i) fails to hold
true in the Definition 2.

We first consider local stochastic fluctuations in the immediate vicinity of every
given stationary EGR(L). As in the two-sunspot state case, we say that a neigh-
borhood of an SSEG(k, L) denoted (β, �) is a product set V ×Mk , where V is
a neighborhood of the vector β in RkL and Mk is the set of all k-dimensional
stochastic matrices �. Hence an SSEG(k, L) denoted (β, �) is in the neighbor-
hood of an EGR(L) β̂b whenever β stands close enough to the kL-dimensional
vector (β̂b, . . . , β̂b). The next result extends Proposition 1.

PROPOSITION 4. Consider the reduced form (7). Assume that γ 
= 0, that is,
expectations matter, and δL 
= 0. Then there exist SSEG(k, L) is every neighbor-
hood of the stationary EGR(L) β̂b for any b 
= L + 1. On the contrary, there is a
neighborhood of stationary EGR(L) β̂L+1 (governing perfect-foresight dynamics
restricted to the eigensubspace corresponding to the L perfect-foresight roots of
lowest modulus) in which there do not exist any SSEG(k, L).

Proof. Let β̄ denote the kL-dimensional vector (β̄1
1 , β̄1

2 , . . . , β̄1
L , β̄2

1 , . . . , β̄2
L ,

β̄k
1 , . . . , β̄k

L). Then, linearizing the equilibrium condition �l(β̄
s
1, β̄

s
l+1) = βs

l
(l = 1, . . . , L and s = 1, . . . , k) in the neighborhood of the kL-dimensional vec-
tor (β̂b, . . . , β̂b) leads to [notice that β̄ reduces to (β̂b, . . . , β̂b) at the point
(β̂b, . . . , β̂b)]

β = Fβ̄, (16)

where F is a kL-dimensional matrix equal to

F =




F(β̂b) 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 F(β̂b)


 ,

where

F(β̂b) = − γ

γ β̄b
1 + 1




β̂b
1 1 0 · · · 0
... 0

. . .
...

...
...

. . . 0
... 0 · · · 0 1

β̂b
L 0 · · · · · · 0




,
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186 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

with 0 the L-dimensional zero matrix. It is shown by Gauthier (1999) that the L
eigenvalues of the L-dimensional matrix F(β̂b) are λ j/λb for every j 
= b ( j, b =
1, . . . , L + 1). Observe now that β̄ = (� ⊗ IL)β where the symbol ⊗ represents
the Kronecker product, and where IL is the L-dimensional identity matrix. Remark
also that F = IL ⊗ F(β̂b). As a result, (16) becomes

β = (
IL ⊗ F(β̂b)

)
(� ⊗ IL)β ⇔ β = (� ⊗ F(β̂b))β

⇔ [
IkL − (� ⊗ F(β̂b))

]
β = 0.

Since (β̂b, . . . , β̂b) is a solution of this system, the same argument as the one used
in the proof of Proposition 1 shows that there exist SSEG(k, L) in the neighborhood
of (β̂b, . . . , β̂b) if and only if

det
[
IkL − (� ⊗ F(β̂b))

] = 0. (17)

Let µs (s = 1, . . . , k) be an eigenvalue of �. Then, the eigenvalues of IkL − (� ⊗
F(β̂b)) are of the form 1 − µsλ j/λb for s = 1, . . . , k and j = 1, . . . , L + 1 and
j 
= b [see Magnus and Neudecker (1988)]. So that (17) admits a solution � if and
only if there exists λ j , j 
= b, such that λb/λ j is an eigenvalue of �. Therefore,
given that |µs | ≤ 1 and |λL+1| is the root of largest modulus, (17) is satisfied for
some � if and only if b 
= L + 1.

Hence our approach fits McCallum’s conjecture in the general framework con-
sidered in this section in the sense that the equilibrium path defined by β̂L+1 is the
only one that is free of any sunspot equilibria in its neighborhood. This result builds
upon that of Gauthier (1999) who provides related arguments for the selection of
the solution corresponding to the L roots of lowest modulus. Gauthier (1999) ac-
tually shows that this bubble-free path is the only one that is locally determinate
in perfect-foresight dynamics on extended growth rates. Although Proposition 4 is
independent of the stability (determinacy) properties of the local perfect-foresight
dynamics, attention should be focused only on the indeterminate configuration
(|λL+1| < 1) for these dynamics, as long as one prevents the state variable from
leaving V (x̄).

Example

Figure 3 gives an example of such sunspot equilibria. It actually represents sub-
spaces that trigger the law of motion of the state variable in V (x̄) in the case L = 2;
that is, the perfect-foresight dynamics are governed by three perfect-foresight
roots: λ1, λ2 and λ3 (with |λ1| < |λ2| < |λ3|). The two-dimensional subspace W2
is spanned by eigenvectors associated with λ1 and λ3. As shown in Lemma 1,
the dynamics restricted to W2 are xt = (λ1 + λ3)xt−1 − λ1λ3xt−2. It follows from
Proposition 4 that it is possible to build SSEG(k, 2) close to W2. Here, k = 2, so
that these equilibria are defined by the same two-dimensional stochastic matrix �
and two different two-dimensional vectors (βs

1, β
s
2) for s = 1, 2. Both vectors stand

arbitrarily close to (λ1 + λ3, −λ1λ3). They define the two-dimensional subspaces
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BUBBLE-FREE SOLUTIONS 187

FIGURE 3. Example of sunspot equilibria in which subspaces trigger the law of motion of
the state variable in V (x̄) in the case L = 2.

FIGURE 4. Change in the value of the state variable for s0 = 1 and s1 = 2.

E1 and E2, respectively. The state variable will alternate between E1 and E2 ac-
cording to the current sunspot signal. In Figure 4, we depict the change in the value
of the state variable for s0 = 1 and s1 = 2.

As in our preliminary example, we now ask whether the bubble-free role of the
path defined by β̂L+1 will be maintained in the case in which agents randomize
over different stationary EGR(L). For simplicity, we assume that k = L + 1, i.e.,
all the stationary EGR(L) enter the support of the beliefs. Precisely, we consider
that traders hold beliefs β in the neighborhood of (β̂1, . . . , β̂L+1). The next result
extends Proposition 2: We show that there is no SSEG(L + 1, L) as soon as the
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188 GABRIEL DESGRANGES AND STÉPHANE GAUTHIER

sunspot state associated with the expected growth rate βL+1 near β̂L+1 is persistent
enough, that is, every πs(L+1) is large enough.

PROPOSITION 5. There exists a neighborhood of (π1(L+1), . . . , π(L+1)(L+1)) =
(1, . . . , 1) and a neighborhood of (β̂1, . . . , β̂L+1) such that there is no SSEG(L +
1, L) in the neighborhood of (β̂1, . . . , β̂L+1) associated with a sunspot process
with transition probabilities in the neighborhood of (π1(L+1), . . . , π(L+1)(L+1)) =
(1, . . . , 1).

Proof. The proof mimics the proof of Proposition 4. Consider the following
L(L + 1)-dimensional matrix:

G =




F(β̂1) 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 F(β̂L+1)


 ,

where the F(β̂b) are the L-dimensional matrices defined in the proof of Propo-
sition 4 (notice β̄b

l is now different from β̂b
l ). There exist SSEG(L + 1, L) in the

neighborhood of (β̂1, . . . , β̂L+1) if and only if, for some matrix �,

det[IL(L+1) − G(� ⊗ IL)] = 0.

Notice now that

G(� ⊗ IL) =




π11 F(β̂1) · · · π1L+1 F(β̂1)
...

. . .
...

πL+11 F(β̂L+1) · · · πL+1L+1 F(β̂L+1)


 .

At the point [π1(L+1), . . . , π(L+1)(L+1)] = (1, . . . , 1), this matrix reduces to

G(� ⊗ IL)(π1(L+1),...,π(L+1)(L+1))=(1,...,1) =




0 · · · 0 F(β̂1)
...

. . .
...

...

0 · · · 0 F(β̂L+1)


 .

It is then straightforward that the eigenvalues of this matrix are 0 with multi-
plicity L2 and each eigenvalue of F(β̂L+1) with multiplicity 1. Some computa-
tions show that the eigenvalues of F(β̂L+1) are λ j/

∑L+1
s=1 π jsλs for j = 1, . . . , L .

These computations are precisely as follows: Every λ j for j 
= L + 1 satisfies
the polynomial identity λL

j = ∑L
l=1 β̂L+1

l λL−l
j . It follows that −λ jγ /(γ β̄L+1

1 + 1)

is an eigenvalue of the transpose of F(β̂L+1) [associated with the eigenvec-
tor (λL−1

j , . . . , λ j , 1)] and it is then an eigenvalue of F(β̂L+1) itself. Because
β̄L+1

1 = ∑L+1
s=1 πL+1s β̂

s
1, β̂

s
1 = ∑

j 
=s λ j , and
∑

j λ j = −1/γ , it follows that

−(γ β̄L+1
1 + 1)/γ = ∑L+1

s=1 πL+1sλs .
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Finally, because the perfect-foresight roots λs are assumed to be distinct and
smaller than λL+1 in modulus, no eigenvalue of F(β̂L+1) is equal to 1 and no eigen-
value of [IL(L+1) − G(� ⊗ IL)] is equal to 0 when (π1(L+1), . . . , π(L+1)(L+1)) =
(1, . . . , 1). Hence, its determinant is not equal to 0 either. Then, by continuity
of the determinant with the coefficients πss ′ , there is a compact neighborhood
of the point (π1(L+1), . . . , π(L+1)(L+1)) = (1, . . . , 1) such that the determinant
det [IL(L+1) − G(� ⊗ IL)] is nonzero for every matrix with transition probabil-
ities in this neighborhood. Applying the same argument as the one used in proof
of Proposition 1 shows the result.

The purpose of the next proposition is to provide a coudition that ensures stability
in the case in which the stationary state is locally determinate in the perfect-
foresight dynamics (|λL+1| > 1). The stability concept is the same as the one
defined in Proposition 3.

PROPOSITION 6. Consider an SSEG(k, L) defined by (β, �) that sustains a
sequence of stochastic realizations {xt }+∞

t=−L . Let Bs be the L-dimensional
companion matrix associated with the L-dimensional vector βs :

Bs =




βs
1 · · · · · · βs

L

1
. . . 0

...
. . .

. . .
...

0 · · · 1 0


 .

Let ‖Bs‖ = sup|z|=1 |Bsz| the norm of matrix Bs. Let qs be the long-run proba-
bility of the signal s (s = 1, . . . , k) corresponding to �. Then, an SSEG(k, L) is
stable if

∏k
s=1 ‖Bs‖qs < 1. If this stability condition holds true, then endogenous

stochastic fluctuations of the state variable are vanishing asymptotically; that is,
P (lim xt = x̄) = 1.

Proof. When the current signal is s, then the L-dimensional vector xt = (xt , . . . ,

xt−L) is given by

xt = Bsxt−1.

Hence, for an history of the sunspot process s0, . . . , st , one obtains

xt = Bst · · · Bs0 x−1.

A standard result on matrix norms is

‖xt‖ ≤ ∥∥Bst

∥∥ · · ·∥∥Bs0

∥∥‖x−1‖,

which is rewritten

ln
‖xt‖
‖x−1‖ ≤

t∑
τ=0

ln
∥∥Bsτ

∥∥.
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Consider then the k-state ergodic Markov process with state space {ln ‖B1‖, . . . ,
ln ‖Bk‖} and with transition matrix �. The proposition follows from Theorem
I.15.2 in Chung (1967) as in the two-sunspot state case of Proposition 3.

4. CONCLUSION

The purpose of this paper was to provide a criterion allowing for the definition of
the bubble-free solutions in dynamic rational expectations models. We have studied
whether (Markovian) sunspot-like beliefs can be self-fulfilling in the neighborhood
of candidates solutions for the label “bubble-free,” that is, those solutions that do
not display irrelevant lags with respect to the number of initial conditions. We have
shown that there is only one equilibrium path close to which the sunspot fluctua-
tions under consideration cannot arise, and we have emphasized that the choice of
this path is independent of the local properties of the perfect-foresight dynamics.
It is worth noticing that, as soon as the suitable dynamics with perfect foresight on
(extended) growth rates is written, as done by Gauthier (1999), this existence re-
sult is in accordance with the well-known results linking the existence of sunspot
equilibria to determinacy properties of the (correctly chosen) perfect-foresight
dynamics. Finally, the unique bubble-free path belongs to the eigensubspace
of the perfect-foresight dynamics spanned by the L roots of lowest modulus. It is
the solution identified by McCallum’s (1999) MSV criterion. Accordingly, it fits
the conventional wisdom that the saddle stable path is the unique fundamentals
solution in the saddle-point configuration.
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