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Abstract We study how asymmetric information affects the set of rationalizable
solutions in a linear setup where the outcome is determined by forecasts about this same
outcome. The unique rational expectations equilibrium is also the unique rationalizable
solution when the sensitivity of the outcome to agents’ forecasts is less than one,
provided that this sensitivity is common knowledge. Relaxing this common knowledge
assumption, multiple rationalizable solutions arise when the proportion of agents who
know the sensitivity is large, and the uninformed agents believe it is possible that the
sensitivity is greater than one. Instability is equivalent to existence of some kind of
sunspot equilibria.
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1 Introduction

The rational expectations equilibrium (REE) supposes common knowledge (CK) of
expectations. Following Guesnerie (1992), one can assess the relevance of this assump-
tion by considering rationalizable outcomes. An outcome is rationalizable whenever it
is consistent with CK of rationality and model. The REE is always a rationalizable out-
come, but it is not necessarily the only rationalizable outcome since rationalizability
entails no prior knowledge about expectations.

When the REE is the only rationalizable outcome, agents’ expectations and the
market outcome (prices, allocations) are uniquely determined by the fundamentals.
This is no longer the case when there are multiple rationalizable outcomes. Expec-
tations can then be heterogeneous and wrong,1 and the market outcome is no longer
pinned down by fundamentals. In this case, the REE is ‘unstable.’

We address the stability issue in a linear coordination game with a continuum of
players. In this class of games, stability is determined by the sensitivity of the actual
aggregate outcome to agents’ beliefs about it. Under CK of the sensitivity, Guesnerie
(1992) shows that the REE is stable if and only if the sensitivity parameter is smaller
than one. We relax the CK assumption and introduce asymmetric information about
the sensitivity: Some agents are perfectly informed, and the others have no private
information about the sensitivity.

Suppose that the sensitivity differs across states of nature. Our main result is that
asymmetric information about the sensitivity can lead to instability even in states of
nature where the REE is the unique rationalizable outcome under CK of the sensitivity.

The intuition for this result hinges on a contagion-like argument across the different
states of nature. Every agent wants to predict the outcome and, to achieve this goal,
needs to expect others’ behavior. But why should an informed agent care about the
outcome in a state that does not occur? To predict the outcome in the true state, the
informed agent needs to predict uninformed agents’ behavior. To determine his own
behavior, every uninformed agent must predict the outcome in every state since he does
not know the true state. Everyone therefore takes account of all the states to predict the
outcome. Both informed and uninformed agents are crucial for the contagion effect
across states.

When there is a state of nature where the sensitivity is greater than one, this
contagion-like argument implies that adding a small mass of uninformed agents to a
world with perfectly informed agents is enough to lead to instability. Indeed, informed
agents are unable to predict the outcome in the state where the sensitivity is greater
than one. Therefore, uninformed agents cannot predict the outcome in this state, and
instability spills over into other states through the forecasts of uninformed agents.

We show that instability under asymmetric information obtains if and only if there
is a state where the sensitivity is greater than one and the proportion of informed
agents is high enough. The main implication of this result is that a higher proportion
of informed agents can be ‘destabilizing’: ‘More information’ leads to instability.

1 Dominitz and Manski (2007, 2011) and Arrondel et al. (2012) provide recent empirical evidence about
heterogeneous expectations.

123



Asymmetric information and rationalizability 791

Alternative assessments of REE instability refer to multiplicity of REE or existence
of sunspot equilibria. We introduce a concept of sunspot equilibrium adapted to our
static framework to discuss instability of the REE using the sunspot approach. We
show equivalence between multiplicity of rationalizable outcomes and existence of a
sunspot equilibrium.

In the main strand of the literature, asymmetric information in linear coordination
games has been analyzed under CK of the sensitivity (Morris and Shin 2002; Angeletos
and Pavan 2004, 2007; Hellwig 2005; Cornand and Heinemann 2010). We depart from
the literature by assuming that uncertainty bears on the sensitivity parameter.

Our equivalence between instability and existence of sunspot equilibrium is remi-
niscent of equivalence results found in dynamic models in Guesnerie (1993). Guesnerie
and Jara-Moroni (2011) discuss the links between various concepts based on CK ideas.

The paper is organized as follows. The benchmark setup is presented in Sect. 2. The
case of complete information is briefly described in Sect. 3. In Sect. 4, the analysis
is extended to the case of asymmetric information, and the main results are given. In
Sect. 5, we consider extraneous uncertainty of the sunspot type.

2 The framework

We consider a stylized model with a beauty contest issue. There is a continuum of
infinitesimal agents i ∈ [0, 1] who simultaneously form forecasts pe

i about the ‘price.’
These forecasts then determine the actual price. The uncertainty about fundamentals
is represented by Ω states of nature indexed by ω, ω = 1, . . . , Ω . In state ω, the
actual price is

p(ω) = φ (ω)

1∫

0

pe
i di + η (ω) . (1)

Fundamentals in state ω are summarized by the pair (φ (ω) , η (ω)), where φ (ω)

measures the sensitivity of the actual price to forecasts and η (ω) is a scale factor.
The reduced form used by Morris and Shin (2002) fits (1) with φ(ω) = φ ∈ (0, 1).
In the sequel, we also assume that the model exhibits strategic complementarity, that
is, φ(ω) > 0 for every ω. Our analysis would apply in the presence of strategic
substitutability, that is, φ(ω) < 0 for every ω, as in the agricultural model of Guesnerie
(1992). However, it does not extend to the case where the signs of the sensitivity to
beliefs differ across states of nature.

Example 1 The Muth model (Guesnerie 1992). There is a continuum of farmers
i ∈ [0, 1] who produce corn. Each farmer chooses his crop one period before observing
the corn price. The cost of producing q units of corn is q2/σ , with σ > 0. Farmer
i expected profit is pe

i q − q2/σ , and thus, his production is qi = σ pe
i . The actual

price clears the market. The aggregate demand is b − ap. Aggregate supply equals
aggregate demand when
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792 G. Desgranges, S. Gauthier

σ

∫
pe

i di = −ap + b,

which fits (1), with φ(ω) = φ = −σ/a < 0. In this example, the sensitivity is the
same in every state. The sensitivity would vary across states of nature with uncertain
aggregate demand, for example, b(ω) − a(ω)p in state ω(a(ω), b(ω) > 0).

Example 2 Lucas supply curve. There is a continuum of infinitesimal firms i ∈ [0, 1].
Supply of firm i is qi = σ(pi − pe

i ), where pi stands for the price of its product and
pe

i represents its forecast about the aggregate price level. The aggregate price level in
state ω is

p(ω) ≡
1∫

0

pi (ω)di.

The aggregate demand is −a(ω)p + b(ω) in state ω when the aggregate price is p. In
equilibrium, the aggregate price p (ω) satisfies

1∫

0

σ(pi (ω) − pe
i )di = −a(ω)p (ω) + b(ω).

This fits (1), with φ (ω) ≡ σ/(σ + a(ω)) > 0 and η (ω) ≡ b(ω)/(σ + a(ω)).

3 Complete information

In (1), the individual price forecasts implicitly depend on agents’ information. When
it is commonly known that the state is ω, price forecasts are made conditionally on ω,
that is, pe

i = pe
i (ω) in (1). A rational expectations equilibrium (REE) is a price p∗(ω)

solution to ( 1) when pe
i (ω) = p∗(ω) for all i . The REE is unique if and only if

φ (ω) �= 1.
The REE can be viewed as the Nash equilibrium of a strategic guessing game in

which agent j chooses a forecast pe
j (ω) which minimizes his forecast error (p(ω)

− pe
j (ω))2, given that p(ω) is determined by (1). In this game, the best-response

forecast of agent j to a profile
(

pe
i (ω)

)
of others’ forecasts is

pe
j (ω) = φ (ω)

1∫

0

pe
i di (ω) + η (ω) . (2)

Through this interpretation, every agent expects p∗(ω) because each one believes
that all the others expect p∗(ω). This (second order) belief is justified by higher order
beliefs such that all the agents believe that all the rest expect p∗(ω). The price p∗(ω)

is the only one consistent with the common knowledge (CK) of every agent expecting
it.
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Asymmetric information and rationalizability 793

Following Guesnerie (1992), this interpretation suggests an assessment of the REE
relying on a weaker assumption than CK of pe

i (ω) = p∗(ω) for all i . Assume instead

that it is CK that the actual price p(ω) belongs to some set P0 =
[

p0
inf , p0

sup

]
which

comprises p∗(ω). From this assumption, it is CK that pe
i (ω) ∈ P0 for all i . Appealing

to (1), all the agents can infer that the actual price will be in the set P1(ω) = Rω(P0)

where the map Rω is defined by

Rω (P) ≡ [φ(ω)P + η(ω)] ∩ P,

where P is any subset of prices. The actual price is determined by (1), provided that
it is in P0. Otherwise, it is the appropriate bound of P0, either p0

inf (if the price given
by (1) is less than p0

inf ) or p0
sup (if the price is greater than p0

inf ).
One defines a sequence of sets Pτ (ω) along the same lines by Pτ (ω)

= Rω(Pτ−1 (ω)). It follows that if it is CK that p(ω) ∈ Pτ−1(ω), then it is CK
that p(ω) ∈ Pτ (ω) = Rω(Pτ−1(ω)). Then, the set of prices consistent with the
common knowledge assumptions is the limit set

P∞ (ω) = ∩
τ≥0

Pτ (ω).

This limit set is properly defined since the sequence Pτ (ω) is decreasing. The limit
set is the set of rationalizable price forecasts of the guessing game (where forecasts
are a priori restricted to P0 ).

The equilibrium is ‘stable’ when P∞ (ω) = {p∗(ω)}. Otherwise, the REE is ‘unsta-
ble.’ Every price in P0 is rationalizable when the REE is unstable. The following
condition for stability has been given by Guesnerie (1992):

Proposition 1 The REE is stable if and only if φ (ω) < 1.

This proposition provides a benchmark for our analysis of the asymmetric infor-
mation case. Stability is obtained when the economic system is not too sensitive to
forecasts in (1), or equivalently agents’ forecasts are not too sensitive to others’ fore-
casts in (2).

4 Asymmetric information

We now assume that there are only α (0 ≤ α < 1) ‘informed’ agents who observe
ω before choosing their price forecasts. The (1 − α) remaining agents have no infor-
mation about the true state of nature at that time. These ‘uninformed’ agents have
common prior beliefs: They all believe that state ω occurs with probability π(ω).

A REE is a vector of (p∗(1), . . . , p∗(Ω)) such that

p∗ (ω) = φ (ω)

(
αp∗ (ω) + (1 − α)

∑
w

π(w)p∗(w)

)
+ η (ω) (3)
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794 G. Desgranges, S. Gauthier

for any ω. The REE coincides with the Nash equilibrium of an amended guessing
game in which agents try to minimize their forecast errors. This Bayesian game is
as follows. First, the true state ω is observed only by the informed agents i ∈ [0, α].
Then, all the agents simultaneously choose their forecasts. The strategy of agent i is a
price forecast conditional on his information. If i is informed, his strategy is a vector
of price forecasts

(
pe

i (1), . . . , pe
i (Ω)

)
, where pe

i (ω) is the price expected by i to arise
in state ω. If i is uninformed, then his strategy merely consists of a single price forecast
pe

i independent of ω. The aggregate price forecast in state ω is therefore

α∫

0

pe
i (ω) di +

1∫

α

pe
i di.

Finally, the actual price p(ω) is determined by the aggregate price forecast accord-
ing to the map

p(ω) = φ (ω)

⎛
⎝

α∫

0

pe
i (ω) di +

1∫

α

pe
i di

⎞
⎠ + η (ω). (4)

Example 1 The Muth model. The aggregate demand in state ω be b(ω)− a(ω)p. The
expected profit of an informed farmer i is pe

i (ω)q − q2/σ , and his supply is qi (ω) =
σ pe

i (ω). The expected profit of an uninformed farmer is
∑

w π(w)pe
i (w)q −q2/σ , so

that his production is qi = σ
∑

w π(w)pe
i (w). In equilibrium, the actual price p(ω)

in state ω is such that

σ

⎛
⎝

α∫

0

pe
i (ω)di +

1∫

α

∑
w

π(w)pe
i (w)di

⎞
⎠ = −a(ω)p(ω) + b(ω).

Example 2 Lucas supply curve. If firm i is informed about the demand function,
its supply is qi = σ(pi (ω) − pe

i (ω)). If it is uninformed, its supply is qi = σ(pi

− ∑
w π(w)pe

i (w)). The aggregate price level is

p(ω) ≡
α∫

0

pe
i (ω)di +

1∫

α

pi di.

Therefore, in equilibrium,

σ p(ω) − σ

⎛
⎝

α∫

0

pe
i (ω)di +

1∫

α

∑
w

π(w)pe
i (w)di

⎞
⎠ = −a(ω)p(ω) + b(ω).

123



Asymmetric information and rationalizability 795

Assume CK that the price a priori belongs to some interval P0 which includes
the equilibrium prices p∗(ω) for every ω. Every agent thus knows that all the other
agents expect the price to be in P0, and, consequently, each one understands that the
aggregate price forecast is in P0 in any state of nature. Hence, every agent concludes
that the price in state ω belongs to the set P1(ω) = Rω

(
P0

)
, which is included in P0

and may coincide with P0. When P1(ω) � P0, agents have succeeded in eliminating
some price forecasts.

Iterating this process yields the CK restriction that the price in state ω is in some set
Pτ−1 (ω) after τ − 1 steps. At step τ , every agent knows that all the others expect the
price in state ω to be in Pτ−1 (ω). Every agent understands that the price forecast in
state ω of an informed agent is in Pτ−1 (ω) and that the price forecast of an uninformed
agent is in

∑
w π(w)Pτ−1 (w). All agents conclude that the price in state ω belongs

to

Pτ (ω) = Rω

(
αPτ−1(ω) + (1 − α)

∑
w

π(w)Pτ−1(w)

)
. (5)

The relation (5) defines a sequence of intervals (Pτ (ω), τ ≥ 0) for every ω. These
sequences are decreasing and converge to limit sets P∞ (ω). The REE is ‘stable’
whenever P∞ (ω) = {p∗(ω)} for every ω. Otherwise, it is ‘unstable.’

As in Sect. 3, this definition has a game-theoretical counterpart in terms of rational-
izable solutions (Bernheim 1984; Pearce 1984). At step τ , if the strategy set is restricted
to ×ω Pτ−1 (ω) for an informed agent and to

∑
w π (w) Pτ−1 (w) for an uninformed

agent, then the best-response of agent i is a strategy in ×ω Pτ (ω) when he is informed,
and in

∑
w π (w) Pτ (w) when he is uninformed. The limit sets P∞ (ω) are the ratio-

nalizable price forecasts of the ‘guessing’ game: P∞ (1)×· · ·× P∞ (Ω) is the set of
rationalizable price forecasts of an informed agent, and

∑
w π (w) P∞ (w) is the set of

rationalizable price forecasts of an uninformed one. Stability of the REE is equivalent
to the uniqueness of the rationalizable price forecast, which then reduces to the REE
prices.

4.1 (In)stability results

The following result presents the properties of the set of rationalizable prices when
the REE is unstable.

Proposition 2 Consider an unstable REE.

(1) For every ω {p∗ (ω)} � P∞ (ω): For every ω, the set P∞ (ω) of rationalizable
prices in state ω includes but differs from {p∗ (ω)}.

(2) There is ω such that p∞
inf (ω) = p0

inf , and there is ω′ (possibly different from
ω) such that p∞

sup

(
ω′) = p0

sup. In addition, for every ω such that αφ (ω) > 1

P∞ (ω) = P0.
(3) For every ω such that φ (ω) < 1 P∞ (ω) � P0, and P∞ (ω) decreases in

P0: If P0 � P̃0, then the limit sets P∞ (ω) and P̃∞ (ω) associated with the
initial restrictions P0 and P̃0 are such that P∞ (ω) � P̃∞ (ω).
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796 G. Desgranges, S. Gauthier

The first item of this Proposition is a formal statement of the ‘contagion’ property.
It shows that no price p∗ (ω) can be guessed in the case of instability, even in a state ω

where φ (ω) < 1. Indeed, uninformed agents cannot select a single price forecast when
the REE is unstable. This situation implies that, in every state, agents cannot settle
upon the aggregate price forecast. Therefore, the actual price, which is determined by
the aggregate price forecast, cannot be uniquely determined.

When the equilibrium is unstable, some ‘coordination’ volatility occurs in all the
states at the outcome of the process of elimination of non-best-response strategies.
The magnitude of this volatility can be measured in state ω by the size of the interval
P∞ (ω) of rationalizable prices. Volatility is dampened when P∞ (ω) is a narrow
interval around the REE price p∗ (ω). The second and the third items of Proposition 2
characterize how the residual volatility depends on economic fundamentals. They show
that a low sensitivity to beliefs φ (ω) plays a role reminiscent of that in the complete
information case. A low sensitivity favors a narrow set P∞ (ω) of rationalizable prices
in state ω. In the contrary case, in a state where φ (ω) is large enough, the iterative
process (5) provides no additional information: P∞ (ω) = P0. These two items also
show how the magnitude of this volatility depends on the initial assumption made
about the relevant prices: A narrower prior set P0 yields a narrower set P∞ (ω) of
rationalizable prices at the outcome of (5).

Thus far, we have focused on the description of an unstable REE. The system ( 5)
is a first-order linear recursive system. The REE is stable if and only if the spectral
radius of the square matrix governing the dynamics (5) is less than 1. This yields the
conditions for stability of the REE given in Proposition 3.

Proposition 3 Assume that φ (ω) > 0 for any ω. Let 0 ≤ α ≤ 1.

(1) If αφ (ω) > 1 for some ω, then the REE is unstable.
(2) If αφ (ω) < 1 for every ω, then the REE is stable if and only if

Ω∑
w=1

π (w)
(1 − α) φ (w)

1 − αφ (w)
< 1. (6)

Point 1 in Proposition 3 states that the REE is stable in (5) only if αφ (ω) < 1
for every ω. This inequality would also govern stability of the REE in state ω in a
complete information setup involving α informed agents only. This fact suggests one
should interpret this inequality by referring to a virtual restricted coordination problem
which abstracts from the difficulties caused by uninformed agents. Namely, if informed
agents know that the forecast of uninformed agents is fixed at p̄∗ ≡ ∑

w π(w)p∗(w),
then the actual price in state ω is

p(ω) = φ(ω)

α∫

0

pe
i (ω)di + η̃ (ω)

where η̃ (ω) = (1 − α) φ(ω) p̄∗ + η (ω). This virtual restricted setup is formally
equivalent to the complete information case discussed in the previous section (with a
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Asymmetric information and rationalizability 797

mass α of agents only). Hence, by Proposition 1, the REE is unstable when αφ(ω) > 1.
In this configuration, informed agents cannot correctly predict the price in state ω, even
though, they know that uninformed agents expect the REE prices. It follows that in
the true unrestricted setup, no agent (neither informed nor uninformed) succeeds in
predicting the price in such a state.

Along the same lines, Point 2 in Proposition 3 can be interpreted as a stability
condition of a virtual restricted problem which abstracts from the difficulties caused
by the informed agents. Namely, if informed agents correctly guess the price, then the
actual price is

p(ω) = φ(ω)

⎛
⎝αp(ω) +

1∫

1−α

p̄e
i di

⎞
⎠ + η(ω),

and the actual average price is

Ω∑
w=1

π (w) p(w) =
(

Ω∑
w=1

π (w)
φ (w)

1 − αφ (w)

) 1∫

1−α

p̄e
i di + η̂(ω),

where

η̂(ω) =
Ω∑

w=1

π (w)
η (w)

1 − αφ (w)
.

Again this virtual restricted setup is formally equivalent to the complete information
case with a mass 1 − α of agents. By Proposition 1, stability of this virtual setup is
given by (6).

The following Corollary to Proposition 3 describes how stability is affected by the
information structure.

Corollary 1 Let φ (ω) > 0 for all ω. Let also α < 1. Then, there is a unique threshold
proportion α∗, 0 ≤ α∗ ≤ 1, of informed agents such that stability of the REE is
obtained if and only if α < α∗. In addition,

(1) if φ (ω) < 1 for any ω, then α∗ = 1,
(2) if there is ω with φ (ω) > 1 and if φ̄ = ∑

π(w)φ (w) < 1, then 0 < α∗ < 1,
(3) if φ̄ > 1, then α∗ = 0.

The REE is stable if and only α < α∗, that is, the proportion of informed agents
is low enough: Information revealed to some uninformed agents can only destabilize
the REE. An intuition in line with Proposition 1 stems from the sensitivity of indi-
vidual forecasts to others’ behavior. When an uninformed agent expects the aggregate
price forecast to change in some state, the adjustment in his own price forecast will
be weighted by the probability of that state occurring. For this reason, his forecast-
ing behavior is less sensitive to others’ forecasts than the behavior of an informed
agent. The uninformed agent’s behavior is consequently easier to predict, which favors
stability.
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798 G. Desgranges, S. Gauthier

Fig. 1 Information structure and rationalizable prices in a two-state case

4.2 A two-state illustration

Figure 1 summarizes our results in a two-state case, with φ(1) < 1 < φ(2). The
equilibrium price p∗(1) is normalized to 0 in state 1. The black increasing curve depicts
the relation between the equilibrium price p∗(2) in state 2 and the proportion α.

By Proposition 1, when all the agents are informed (α = 1), the price p∗(1) is the
only rationalizable price in state 1 while all prices in P0 are rationalizable in state
2. By Proposition 3, the equilibrium (p∗(1), p∗(2)) is unstable for α large enough
(α > α∗). Introducing a few uninformed agents thus implies multiple rationalizable
prices in state 1, that is, p∞

inf(1) < p∗(1) < p∞
sup(1). However, when α is close to 1,

the influence of uninformed agents on the actual outcome can be neglected, so that
P∞

inf (1) and P∞
sup(1) are close to the equilibrium price P∗(1).

It is supposed in the figure that 0 < α∗ < 1 (Corollary 1). By Proposition 2, the
set of rationalizable prices in state 2 is P0 for α high enough. In the figure, this set
remains equal to P0 for all α > α∗. The dashed lines p∞

inf(1) and p∞
sup(1) represent

the boundaries of the set of rationalizable prices in state 1 for α > α∗. There is a
discontinuity in the set of rationalizable prices in both states when α passes below the
threshold α∗: For α just above α∗, uninformed agents expect any price in P0 to arise
in state 2, and for all α < α∗, the rationalizable prices reduce to the equilibrium prices
in every state.

5 Sunspots and stability

We show how instability results extend to the issue of existence of sunspot equilibria.
It is known that existence of sunspot equilibria is closely related to multiplicity of
rationalizable outcomes (Guesnerie 1993). We introduce a concept of sunspot equilib-
ria adapted to our static framework (equilibrium with imperfectly observed sunspots),
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Asymmetric information and rationalizability 799

and we show that the equivalence result holds. Hence, all our (in)stability results
apply to the sunspot equilibria: Instability of the equilibrium is associated with non-
fundamental equilibrium volatility.

Consider a stochastic sunspot variable that can take Σ values (S = 1, . . . , Σ), not
correlated with fundamentals. Assume that its actual value is not known when agents
form their forecasts. Every agent i observes a private signal si = 1, . . . , Σ imperfectly
correlated with S. Conditionally based on S, private signals are independently and
identically distributed across agents, and the probability Pr(si | S) that i observes si

in sunspot event S is independent of i . Thus, in sunspot event S, there are Pr(s | S)

agents who observe the signal s(s = 1, . . . , Σ).
Suppose that all the agents expect the price pe(ω, S) to arise if the state of funda-

mentals is ω and the sunspot is S. In state (ω, S), there are α Pr(s | S) informed agents
whose price forecast is

Σ∑
S′=1

Pr(S′ | s)pe(ω, S′)

for any s. There are also (1 − α) Pr(s | S) uninformed agents who expect

Σ∑
S′=1

Pr(S′ | s)
Ω∑

w=1

π (w) pe (
w, S′).

Let

μ(S′|S) =
Σ∑

s=1

Pr(s | S) Pr(S′ | s)

be the average probability (across agents) of sunspot S′ if the actual sunspot is S. The
aggregate price forecast Pe(ω, S) is expressed as

Σ∑
S′=1

μ(S′|S)

[
αpe(ω, S′) + (1 − α)

Ω∑
w=1

π (w) pe (
w, S′)

]
, (7)

and the actual price p(ω, S), determined by (1) in state (ω, S), is such that

p(ω, S) = φ (ω) Pe(ω, S) + η (ω) . (8)

A REE is a vector of ΩΣ prices (p∗(1, 1), . . . , p∗(Ω,Σ)) such that pe (ω, S) =
p (ω, S) = p∗(ω, S) for every (ω, S) in (7) and (8). The ‘fundamental’ REE is
obtained when p∗(ω, S) is independent of S. Otherwise, sunspots matter and the REE
is a ‘sunspot’ equilibrium.

The following result gives conditions for the existence of a sunspot REE.
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Proposition 4 There exists a sunspot REE if and only if the fundamental REE is
unstable in (5).

In our linear setup, the stability of the fundamental REE is still ruled by Proposition
3 and Corollary 1. Hence, both results also give necessary and sufficient conditions
needed for the sunspot REE to exist. In particular, sunspot equilibria exist when many
agents are informed about the true state of nature (i.e., α ≥ α∗), and there is a state
where the sensitivity is greater than 1.

6 Conclusion

This paper emphasizes the difficulty of coordinating expectations when the sensitivity
of the market outcome to agents’ forecasts is not common knowledge. A low value of
the true sensitivity is not enough for stability. Instead, either a low average sensitivity
(when there are many uninformed agents) or even a low sensitivity in every possible
state (when there are many informed agents) are needed.

The intuition sustaining these results is easily illustrated in the case with two pos-
sible states of nature, one with a low sensitivity and the other with a high sensitivity.
Under complete information, the rational expectations equilibrium is stable in the ‘low’
state, and unstable in the ‘high’ one. Under asymmetric information, stability proper-
ties of the prices in the two states are no longer disconnected. When many agents are
informed, multiplicity of rationalizable prices arises in the high state (as in the complete
information case). Uninformed agents then fail to predict a unique price in the high
state. By contagion, this failure implies multiple rationalizable prices in the low state.

These results may possibly contribute to the debate about the transparency of eco-
nomic policy. They suggest that the disclosure of information about parameters which
influence the sensitivity of the economy to agents’ beliefs, for example, the slope of
the aggregate demand function in the Muth setup, may be harmful to stability. A gov-
ernment agency or a central bank revealing that the underlying sensitivity is low may
destabilize the equilibrium if it cannot convince all the agents to believe its announce-
ment: Instability occurs between full ignorance and full common knowledge.

A Appendix

Proof of Proposition 2 1. Since the equilibrium is unstable, there is a stateω such that
{p∗ (ω)} � P∞ (ω). The set of rationalizable price forecasts of uninformed agents
cannot be reduced to a single element. In any given state, the set of rationalizable
prices is determined by the aggregate price forecast in that state, which depends
on the forecasts of uninformed agents. Thus, in any given state, the aggregate price
forecast cannot reduce to a single point.

2. Consider the minimum rationalizable prices
(

p∞
inf(ω)

)
ω

. For everyω P∞ (ω) � P0.
In the case where p∞

inf (ω) > p0
inf for every ω, the definition of P∞ (ω) implies

P∞ (ω) = φ (ω) P∞ (ω) + η (ω), and thus, for every ω:

p∞
inf (ω) = αφ (ω) p∞

inf (ω) + (1 − α) φ (ω)
∑

π (w) p∞
inf (w) + η (ω) .
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Since the equilibrium price p∗ (ω) is the unique solution of this equation,
p∞

inf (ω) = p∗ (ω) for every ω. The same holds true for the maximum rationalizable
prices. This shows the first statement.
For ω such that αφ (ω) > 1, we show that p∞

inf (ω) = p0
inf . To this purpose, we

show that, when everyone expects
(

p∞
inf (ω)

)
ω

, we have

p0
inf ≥ αφ (ω) p0

inf + (1 − α) φ (ω)
∑

π (w) p∞
inf (w) + η (ω), (9)

which means that p0
inf is the actual price in state ω (that is: p0

inf = p∞
inf (ω)). Recall

the fixed point relation characterizing the equilibrium (p∗ (ω))ω

p∗ (ω) = αφ (ω) p∗ (ω) + (1 − α) φ (ω)
∑

π (w) p∗ (w) + η (ω) .

Subtracting this equality to (9) gives

Δp (ω) > αφ (ω) Δp (ω) + (1 − α) φ (ω)
∑

π (w)Δp (w),

where Δp (ω) = p∞
inf (ω) − p∗ (ω) ≤ 0. This rewrites

(1 − αφ (ω)) Δp (ω) ≥ (1 − α) φ (ω)
∑

π (w)Δp (w),

which holds true as

(1 − αφ (ω)) Δp (ω) ≥ 0 ≥ (1 − α) φ (ω)
∑

π (w) Δp (w).

The same argument shows that p∞
sup (ω) = p0

sup for every ω such that αφ (ω) > 1.
This shows the second statement.

3. The third item follows from the first step of the iterative process. By assumption,
the equilibrium price η(ω)/(1−φ(ω)) under complete information belongs to P0.
From (5), at the first step of the process, we have

p1
inf (ω) = max

(
p0

inf , φ (ω) p0
inf + η (ω)

)
.

Since p0
inf < η(ω)/(1 − φ(ω) and φ (ω) < 1, we have p1

inf (ω) > p0
inf . By

definition, the map Rω(P) cannot be increasing with τ . It follows that p∞
inf (ω) ≥

p1
inf (ω) > p0

inf . The same argument shows that

p1
sup (ω) = min

(
p0

sup, φ (ω) p0
sup + η (ω)

)
< p0

sup,

so that p∞
sup (ω) ≤ p1

sup (ω) < p0
sup. This shows that P∞(ω) is a strict subset of

P0. ��
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Proof of Proposition 3 Consider, for example, the Ω equations in (5) corresponding
to the lowest bounds pτ

inf(ω) of Pτ (ω). They can be rewritten in matrix form pτ+1
inf =

Mpτ
inf + η, where pτ

inf is the Ω × 1 vector (Pτ
inf (1) , . . . , Pτ

inf (Ω)) η is the Ω × 1
vector (η (1) , . . . , η (Ω)), and M is the Ω ×Ω matrix α�+ (1 − α) �� (with � the
diagonal Ω ×Ω matrix whose ωωth entry is φ(ω), and � the Ω ×Ω stochastic matrix
whose ωω′th entry is π(ω′)). The REE is stable if and only if the spectral radius ρ(M)

of M is less than 1. The proof now hinges on the fact that for any Ω × Ω positive
matrix M and any Ω × 1 vector x = (xω) with every xω > 0, we have

min
ω

(Mx)ω

xω

≤ ρ(M) ≤ max
ω

(Mx)ω

xω

,

where (Mx)ω stands for the ωth component of the Ω × 1 vector Mx (see Lemma
3.1.2. in Bapat and Raghavan 1997). Let

Q (x, ω) = (Mx)ω

xω

= φ (ω)

[
α + (1 − α)

1

xω

Ω∑
w=1

π (w) xw

]
,

for any ω. Assume first that αφ (ω) > 1 for some ω, for example, ω = Ω . Then, con-
sider the vector x = (ε, . . . , ε, 1)′ where ε > 0. When ε tends toward, 0 Q (x, ω) tends
to (+∞) for every ω < Ω and Q (x,Ω) ≥ αφ (Ω) > 1. Hence, minω Q (x, ω) > 1
for ε small enough and so ρ(M) > 1: The REE is unstable if αφ (ω) > 1 for some ω.
If, on the contrary, αφ (ω) < 1 for any ω, then define

E =
Ω∑

w=1

π (w)
(1 − α) φ (w)

1 − αφ (w)
.

Consider the Ω × 1 positive vector x whose ω th component is

xω = 1

E

(1 − α) φ (ω)

1 − αφ (ω)
.

If E ≥ 1, then Q (x, ω) > 1 for any ω so that minω Q (x, ω) ≥ 1, and the REE is unsta-
ble. If, on the contrary, E < 1, then Q (x, ω) < 1 for any ω, so that maxω Q (x, ω) < 1,
and the REE is stable. ��
Proof of Corollary 1 1. Assume first that φ (ω) < 1 for any ω = 1, . . . ,Ω . Then,

αφ (ω) < 1 and (1 − α) φ (ω) / (1 − αφ (ω)) < 1 for any ω. By Proposition 3,
the REE is stable.

2. Let now infω φ (ω) < 1 < supω φ (ω). If α > 1/ supω φ (ω), the REE is unstable,
by Proposition 3. If α ≤ 1/ supω φ (ω), then αφ (ω) < 1 for every ω, and the REE
is stable if and only if (6) is met. Let

F(α) =
Ω∑

w=1

π (w)
φ (w)

1 − αφ (w)
− 1

(1 − α)
(10)
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Since F (·) is a continuous and increasing function of α on the interval[
0, 1/ supω φ (ω)

]
, with F ′(α) > 0 whatever α is, there is at most one value

α such that F(α) = 0 on this interval. Observe now that F(0) = φ̄ − 1, and
F(α) tends to +∞ when α tends to 1/ supω φ (ω) from below. If, on the one hand,
φ̄ ≥ 1, then F(α) ≥ F(0) > 0 for any α ∈ [

0, 1/ supω φ (ω)
]
, and the stability

condition (6) is never satisfied. If, on the other hand, φ̄ < 1, then there exists a
unique solution α∗ (α∗ > 0) to F(α) = 0 in

[
0, 1/ supω φ (ω)

]
. The condition

F(α) < 0, that is, the stability condition (6), is equivalent to α < α∗. Since
F(α∗) = 0 implicitly defines α∗ as a function (φ(1), . . . , φ(Ω)), and since F(·)
increases in every φ (ω) α∗ decreases in every φ (ω).

3. Let φ̄ > 1. We know that F(α) > 0 for any α ∈ [
0, 1/ supω φ (ω)

]
. As a result,

the stability condition (6) is never satisfied. ��
Proof of Proposition 4 Let us rewrite conditions (8) in matrix form. To this aim, let
p(S) be the Ω × 1 vector whose ωth component is p(ω, S), and p be the ΩΣ × 1
vector (p(1), . . . , p(Σ)). Let S be the Σ × Σ stochastic matrix whose S′Sth entry is
μ(S′|S). Then, with M defined in Proposition 3, a REE is a vector p such that

p = (M ⊗ S) p + 1Σ ⊗ η, (11)

where the symbol ⊗ stands for the Kronecker product. Let e(S) be the Sth eigenvalue of
S, with e(S) ∈ [−1, 1] since S is a stochastic matrix. Let μ(ω) be the ωth eigenvalue of
M. Then, the ΩΣ eigenvalues of M⊗S are e(S)μ(ω) for any pair (ω, S). If ρ(M) < 1,
then all the eigenvalues of M ⊗ S have moduli less than 1, and so M ⊗ S − I2Ω is
invertible and there is a unique REE. If ρ(M) ≥ 1, there exist stochastic matrices such
that e(S) = 1/ρ(M) for some S. In this case, the matrix M ⊗ S has an eigenvalue
equal to 1, and there are infinitely many p solution to (11), that is, infinitely many
sunspot REE and the fundamental REE. ��
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