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 THE BEHAVIOR OF STOCK-MARKET PRICES*

 EUGENE F. FAMAt

 I. INTRODUCTION

 FOR many years the following ques-
 tion has been a source of continuing
 controversy in both academic and

 business circles: To what extent can the
 past history of a common stock's price
 be used to make meaningful predictions
 concerning the future price of the stock?
 Answers to this question have been pro-
 vided on the one hand by the various
 chartist theories and on the other hand
 by the theory of random walks.

 Although there are many different
 chartist theories, they all make the same
 basic assumption. That is, they all as-
 sume that the past behavior of a securi-
 ty's price is rich in information concern-
 ing its future behavior. History repeats
 itself in that "patterns" of past price be-

 havior will tend to recur in the future.
 Thus, if through careful analysis of price
 charts one develops an understanding
 of these "patterns," this can be used to
 predict the future behavior of prices and
 in this way increase expected gains.'

 By contrast the theory of random

 walks says that the future path of the
 price level of a security is no more pre-
 dictable than the path of a series of
 cumulated random numbers. In statisti-
 cal terms the theory says that successive
 price changes are independent, identical-
 ly distributed random variables. Most
 simply this implies that the series of price
 changes has no memory, that is, the
 past cannot be used to predict the future
 in any meaningful way.

 The purpose of this paper will be to
 discuss first in more detail the theory
 underlying the random-walk model and
 then to test the model's empirical validi-
 ty. The main conclusion will be that the
 data seem to present consistent and
 strong support for the model. This im-
 plies, of course, that chart reading,
 though perhaps an interesting pastime,
 is of no real value to the stock market in-
 vestor. This is an extreme statement and
 the chart reader is certainly free to take
 exception. We suggest, however, that
 since the empirical evidence produced by
 this and other studies in support of the
 random-walk model is now so volumi-
 nous, the counterarguments of the chart
 reader will be completely lacking in
 force if they are not equally well support-
 ed by empirical work.

 * This study has profited from the criticisms,
 suggestions, and technical assistance of many dif-
 ferent people. In particular I wish to express my
 gratitude to Professors William Alberts, Lawrence
 Fisher, Robert Graves, James Lorie, Merton Miller,
 Harry Roberts, and Lester Telser, all of the Gradu-
 ate School of Business, University of Chicago. I wish
 especially to thank Professors Miller and Roberts for
 providing not only continuous intellectual stimula-
 tion but also painstaking care in reading the various
 preliminary drafts.

 Many of the ideas in this paper arose out of the
 work of Benoit Mandelbrot of the IBM Watson Re-
 search Center. I have profited not only from the
 written work of Dr. Mandelbrot but also from many
 invaluable discussion sessions.

 Work on this paper was supported in part by
 funds from a grant by the Ford Foundation to the
 Graduate School of Business of the University of
 Chicago, and in part by funds granted to the Center
 for Research in Security Prices of the School by the
 National Science Foundation. Extensive computer
 time was provided by the 7094 Computation Center
 of the University of Chicago.

 t Assistant professor of finance, Graduate School
 of Business, University of Chicago.

 1 The Dow Theory, of course, is the best known
 example of a chartist theory.
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 II. THEORY OF RANDOM WALKS

 IN STOCK PRICES

 The theory of random walks in stock
 prices actually involves two separate

 hypotheses: (1) successive price changes
 are independent, and (2) the price
 changes conform to some probability

 distribution. We shall now examine each
 of these hypotheses in detail.

 A. INDEPENDENCE

 1. MEANING OF INDEPENDENCE

 In statistical terms independence means
 that the probability distribution for the
 price change during time period t is inde-
 pendent of the sequence of price changes
 during previous time periods. That is,
 knowledge of the sequence of price changes
 leading up to time period t is of no help
 in assessing the probability distribution
 for the price change during time period
 t.2

 Now in fact we can probably never
 hope to find a time series that is charac-

 terized by perfect independence. Thus,
 strictly speaking, the random walk the-
 ory cannot be a completely accurate de-
 scription of reality. For practical pur-
 poses, however, we may be willing to
 accept the independence assumption of
 the model as long as the dependence in
 the series of successive price changes is
 not above some "minimum acceptable"
 level.

 What constitutes a "minimum accept-
 able" level of dependence depends, of
 course, on the particular problem that

 one is trying to solve. For example, some-
 one who is doing statistical work in the

 stock market may wish to decide whether
 dependence in the series of successive
 price changes is sufficient to account for
 some particular property of the distribu-
 tion of price changes. If the actual de-
 pendence in the series is not sufficient to
 account for the property in question, the
 statistician may be justified in accepting
 the independence hypothesis as an ade-
 quate description of reality.

 By contrast the stock market trader
 has a much more practical criterion for
 judging what constitutes important de-
 pendence in successive price changes. For
 his purposes the random walk model is
 valid as long as knowledge of the past
 behavior of the series of price changes
 cannot be used to increase expected gains.
 More specifically, the independence as-
 sumption is an adequate description of
 reality as long as the actual degree of
 dependence in the series of price changes
 is not sufficient to allow the past history
 of the series to be used to predict the
 future in a way which makes expected
 profits greater than they would be under
 a naive buy-and-hold model.

 Dependence that is important from
 the trader's point of view need not be im-
 portant from a statistical point of view,
 and conversely dependence which is im-
 portant for statistical purposes need not
 be important for investment purposes.
 For example, we may know that on alter-
 nate days the price of a security always
 increases by e and then decreases by e.
 From a statistical point of view knowl-
 edge of this dependence would be impor-
 tant information since it tells us quite a
 bit about the shape of the distribution
 of price changes. For trading purposes,
 however, as long as e is very small, this
 perfect, negative, statistical dependence
 is unimportant. Any profits the trader

 2 More precisely, independence means that

 Pr(xt = XIXt-1, Xt-2, ... ) = Pr(xt = x),

 where the term on the right of the equality sign is
 the unconditional probability that the price change
 during time t will take the value x, whereas the
 term on the left is the conditional probability that
 the price change will take the value x, conditional
 on the knowledge that previous price changes took
 the values xA-1, xt-2, etc.
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 may hope to make from it would be
 washed away in transactions costs.

 In Section V of this paper we shall be
 concerned with testing independence
 from the point of view of both the statis-

 tician and the trader. At this point, how-
 ever, the next logical step in the develop-
 ment of a theory of random walks in
 stock prices is to consider market situa-
 tions and mechanisms that are consistent
 with independence in successive price
 changes. The procedure will be to con-
 sider first the simplest situations and
 then to successively introduce complica-
 tions.

 2. MARKET SITUATIONS CONSISTENT

 WITH INDEPENDENCE

 Independence of successive price
 changes for a given security may simply
 reflect a price mechanism which is totally
 unrelated to real-world economic and po-
 litical events. That is, stock prices may
 be just the accumulation of many bits
 of randomly generated noise, where by
 noise in this case we mean psychological
 and other factors peculiar to different
 individuals which determine the types
 of "bets" they are willing to place on
 different companies.

 Even random walk theorists, however,
 would find such a view of the market un-
 appealing. Although some people may be
 primarily motivated by whim, there are
 many individuals and institutions that
 seem to base their actions in the market
 on an evaluation (usually extremely
 painstaking) of economic and political
 circumstances. That is, there are many
 private investors and institutions who
 believe that individual securities have
 "intrinsic values" which depend on eco-
 nomic and political factors that affect in-
 dividual companies.

 The existence of intrinsic values for
 individual securities is not inconsistent

 with the random-walk hypothesis. In
 order to justify this statement, however,
 it will be necessary now to discuss more

 fully the process of price determination
 in an intrinsic-value-random-walk mar-

 ket.
 Assume that at any point in time

 there exists, at least implicitly, an intrin-
 sic value for each security. The intrinsic

 value of a given security depends on the
 earnings prospects of the company which
 in turn are related to economic and po-

 litical factors some of which are peculiar
 to this company and some of which affect
 other companies as well.3

 We stress, however, that actual mar-
 ket prices need not correspond to intrin-
 sic values. In a world of uncertainty in-
 trinsic values are not known exactly.
 Thus there can always be disagreement
 among individuals, and in this way ac-
 tual prices and intrinsic values can differ.
 Henceforth uncertainty or disagreement
 concerning intrinsic values will come
 under the general heading of "noise" in
 the market.

 In addition, intrinsic values can them-
 selves change across time as a result of
 either new information or trend. New in-
 formation may concern such things as
 the success of a current research and de-
 velopment project, a change in manage-
 ment, a tariff imposed on the industry's
 product by a foreign country, an increase
 in industrial production or any other
 actual or anticipated change in a factor
 which is likely to affect the company's
 DrosDects.

 We can think of intrinsic values in either of
 two ways. First, perhaps they just represent market
 conventions for evaluating the worth of a security
 by relating it to various factors which affect the
 earnings of a company. On the other hand, intrinsic
 values may actually represent equilibrium prices in
 the economist's sense, i.e., prices that evolve from
 some dynamic general equilibrium model. For our
 purposes it is irrelevant which point of view one
 takes.
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 On the other hand, an anticipated
 long-term trend in the intrinsic value of
 a given security can arise in the following
 way.4 Suppose we have two unlevered
 companies which are identical in all re-
 spects except dividend policy. That is,
 both companies have the same current
 and anticipated investment opportuni-
 ties, but they finance these opportunities
 in different ways. In particular, one com-
 pany pays out all of its current earnings
 as dividends and finances new invest-
 ment by issuing new common shares.
 The other company, however, finances
 new investment out of current earnings
 and pays dividends only when there is
 money left over. Since shares in the two
 companies are subject to the same degree
 of risk, we would expect their expected
 rates of returns to be the same. This will
 be the case, however, only if the shares
 of the company with the lower dividend
 payout have a higher expected rate of
 price increase than do the shares of the
 high-payout company. In this case the
 trend in the price level is just part of the
 expected return to equity. Such a trend
 is not inconsistent with the random-walk
 hypothesis.5

 The simplest rationale for the inde-
 pendence assumption of the random walk
 model was proposed first, in a rather
 vague fashion, by Bachelier [6] and then
 much later but more explicitly by Os-
 borne [42]. The argument runs as follows:
 If successive bits of new information
 arise independently across time, and if
 noise or uncertainty concerning intrinsic
 values does not tend to follow any con-
 sistent pattern, then successive price
 changes in a common stock will be inde-
 pendent.

 As with many other simple models,

 however, the assumptions upon which
 the Bachelier-Osborne model is built are
 rather extreme. There is no strong reason
 to expect that each individual's estimates
 of intrinsic values will be independent
 of the estimates made by others (i.e.,
 noise may be generated in a dependent
 fashion). For example, certain individ-
 uals or institutions may be opinion lead-
 ers in the market. That is, their actions
 may induce people to change their opin-
 ions concerning the prospects of a given
 company. In addition there is no strong
 reason to expect successive bits of new
 information to be generated independ-
 ently across time. For example, good
 news may tend to be followed more often
 by good news than by bad news, and bad
 news may tend to be followed more often
 by bad news than by good news. Thus
 there may be dependence in either the
 noise generating process or in the process
 generating new information, and these
 may in turn lead to dependence in suc-
 cessive price changes.

 Even in a situation where there are
 dependencies in either the information
 or the noise generating process, however,
 it is still possible that there are offsetting
 mechanisms in the market which tend to
 produce independence in price changes
 for individual common stocks. For ex-
 ample, let us assume that there are many
 sophisticated traders in the stock market
 and that sophistication can take two
 forms: (1) some traders may be much
 better at predicting the appearance of
 new information and estimating its ef-
 fects on intrinsic values than others,
 while (2) some may be much better at
 doing statistical analyses of price be-
 havior. Thus these two types of sophis-
 ticated traders can be roughly thought
 of as superior intrinsic-value analvsts

 4A trend in the price level, of course, corresponds
 to a non-zero mean in the distribution of price
 changes.

 5 A lengthy and rigorous justification for these
 statements is given by Miller and Modigliani [401.
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 and superior chart readers. We further
 assume that, although there are some-
 times discrepancies between actual prices
 and intrinsic values, sophisticated trad-
 ers in general feel that actual prices usu-
 ally tend to move toward intrinsic val-
 ues.

 Suppose now that the noise generating
 process in the stock market is dependent.
 More specifically assume that when one
 person comes into the market who thinks
 the current price of a security is above
 or below its intrinsic value, he tends
 to attract other people of like feelings
 and he causes some others to change
 their opinions unjustifiably. In itself this
 type of dependence in the noise generat-
 ing process would tend to produce "bub-
 bles" in the price series, that is, periods
 of time during which the accumulation
 of the same type of noise causes the price
 level to run well above or below the in-
 trinsic value.

 If there are many sophisticated traders
 in the market, however, they may cause
 these "bubbles" to burst before they
 have a chance to really get under way.
 For example, if there are many sophisti-
 cated traders who are extremely good at
 estimating intrinsic values, they will be
 able to recognize situations where the
 price of a common stock is beginning to
 run up above its intrinsic value. Since
 they expect the price to move eventually
 back toward its intrinsic value, they have
 an incentive to sell this security or to
 sell it short. If there are enough of these
 sophisticated traders, they may tend to
 prevent these "bubbles" from ever oc-
 curring. Thus their actions will neutral-
 ize the dependence in the noise-generat-
 ing process, and successive price changes
 will be independent.

 In fact, of course, in a world of uncer-
 tainty even sophisticated traders cannot
 always estimate intrinsic values exactly.

 The effectiveness of their activities in
 erasing dependencies in the series of price
 changes can, however, be reinforced by
 another neutralizing mechanism. As long
 as there are important dependencies in
 the series of successive price changes, op-
 portunities for trading profits are avail-
 able to any astute chartist. For example,
 once they understand the nature of the
 dependencies in the series of successive
 price changes, sophisticated chartists will
 be able to identify statistically situations
 where the price is beginning to run up
 above the intrinsic value. Since they ex-
 pect that the price will eventually move
 back toward its intrinsic value, they will
 sell. Even though they are vague about
 intrinsic values, as long as they have
 sufficient resources their actions will tend
 to erase dependencies and to make actual
 prices closer to intrinsic values.

 Over time the intrinsic value of a
 common stock will change as a result of
 new information, that is, actual or an-
 ticipated changes in any variable that
 affects the prospects of the company. If
 there are dependencies in the process
 generating new information, this in it-
 self will tend to create dependence in
 successive price changes of the security.
 If there are many sophisticated traders
 in the market, however, they should
 eventually learn that it is profitable for
 them to attempt to interpret both the
 price effects of current new information
 and of the future information implied by
 the dependence in the information gen-
 erating process. In this way the actions
 of these traders will tend to make price
 changes independent.6

 Moreover, successive price changes
 may be independent even if there is usu-
 ally consistent vagueness or uncertainty

 6 In essence dependence in the information gen-
 erating process is itself relevant information which
 the astute trader should consider.
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 surrounding new information. For exam-
 ple, if uncertainty concerning the im-
 portance of new information consistently
 causes the market to underestimate the
 effects of new information on intrinsic
 values, astute traders should eventually
 learn that it is profitable to take this into
 account when new information appears
 in the future. That is, by examining the
 history of prices subsequent to the influx
 of new information it will become clear
 that profits can be made simply by buy-
 ing (or selling short if the information is
 pessimistic) after new information comes
 into the market since on the average ac-
 tual prices do not initially move all the
 way to their new intrinsic values. If
 many traders attempt to capitalize on
 this opportunity, their activities will
 tend to erase any consistent lags in the
 adjustment of actual prices to changes
 in intrinsic values.

 The above discussion implies, of
 course, that, if there are many astute
 traders in the market, on the average
 the full effects of new information on in-
 trinsic values will be reflected nearly in-
 stantaneously in actual prices. In fact,
 however, because there is vagueness or
 uncertainty surrounding new informa-
 tion, "instantaneous adjustment" really
 has two implications. First, actual prices
 will initially overadjust to the new in-
 trinsic values as often as they will under-
 adjust. Second, the lag in the complete
 adjustment of actual prices to successive
 new intrinsic values will itself be an in-
 dependent random variable, sometimes
 preceding the new information which is
 the basis of the change (i.e., when the
 information is anticipated by the market
 before it actually appears) and some-
 times following. It is clear that in this
 case successive price changes in individ-
 ual securities will be independent random
 variables.

 In sum, this discussion is sufficient to
 show that the stock market may conform
 to the independence assumption of the
 random walk model even though the
 processes generating noise and new in-

 formation are themselves dependent. We
 turn now to a brief discussion of some
 of the implications of independence.

 3. IMPLICATIONS OF INDEPENDENCE

 In the previous section we saw that
 one of the forces which helps to produce
 independence of successive price changes
 may be the existence of sophisticated
 traders, where sophistication may mean
 either (1) that the trader has a special
 talent in detecting dependencies in series
 of prices changes for individual securi-
 ties, or (2) that the trader has a special
 talent for predicting the appearance of
 new information and evaluating its ef-
 fects on intrinsic values. The first kind
 of trader corresponds to a superior chart
 reader, while the second corresponds to
 a superior intrinsic value analyst.

 Now although the activities of the
 chart reader may help to produce inde-
 pendence of successive price changes,
 once independence is established chart
 reading is no longer a profitable activity.
 In a series of independent price changes,
 the past history of the series cannot be
 used to increase expected profits.

 Such dogmatic statements cannot be
 applied to superior intrinsic-value analy-
 sis, however. In a dynamic economy
 there will always be new information
 which causes intrinsic values to change
 over time. As a result, people who can
 consistently predict the appearance of
 new information and evaluate its effects
 on intrinsic values will usually make
 larger profits than can people who do not
 have this talent. The fact that the activ-

 ities of these superior analysts help to

 make successive price changes independ-
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 ent does not imply that their expected
 profits cannot be greater than those of
 the investor who follows some naive buy-
 and-hold policy.

 It must be emphasized, however, that
 the comparative advantage of the supe-

 rior analyst over his less talented com-
 petitors lies in his ability to predict
 consistently the appearance of new in-
 formation and evaluate its impact on
 intrinsic values. If there are enough su-
 perior analysts, their existence will be
 sufficient to insure that actual market
 prices are, on the basis of all available
 information, best estimates of intrinsic
 values. In this way, of course, the supe-
 rior analysts make intrinsic value analy-
 sis a useless tool for both the average
 analyst and the average investor.

 This discussion gives rise to three
 obvious question: (1) How many superior
 analysts are necessary to insure inde-
 pendence? (2) Who are the "superior"
 analysts? and (3) What is a rational in-
 vestment policy for an average investor
 faced with a random-walk stock market?

 It is impossible to give a firm answer
 to the first question, since the effective-
 ness of the superior analysts probably
 depends more on the extent of their re-
 sources than on their number. Perhaps a
 single, well-informed and well-endowed
 specialist in each security is sufficient.

 It is, of course, also very difficult to
 identify ex ante those people that qualify
 as superior analysts. Ex post, however,
 there is a simple criterion. A superior
 analyst is one whose gains over many
 periods of time are consistently greater
 than those of the market. Consistently
 is the crucial word here, since for any
 given short period of time, even if there
 are no superior analysts, in a world of
 random walks some people will do much
 better than the market and some will do
 much worse.

 Unfortunately, by this criterion this
 author does not qualify as a superior
 analyst. There is some consolation, how-
 ever, since, as we shall see later, other
 more market-tested institutions do not
 seem to qualify either.

 Finally, let us now briefly formulate a
 rational investment policy for the aver-
 age investor in a situation where stock
 prices follow random walks and at every
 point in time actual prices represent good
 estimates of intrinsic values. In such a
 situation the primary concern of the
 average investor should be portfolio anal-
 ysis. This is really three separate prob-
 lems. First, the investor must decide
 what sort of tradeoff between risk and
 expected return he is willing to accept.
 Then he must attempt to classify securi-
 ties according to riskiness, and finally he
 must also determine how securities from
 different risk classes combine to form
 portfolios with various combinations of
 risk and return.7

 In essence in a random-walk market
 the security analysis problem of the aver-
 age investor is greatly simplified. If actu-
 al prices at any point in time are good
 estimates of intrinsic values, he need not
 be concerned with whether individual
 securities are over- or under-priced. If he
 decides that his portfolio requires an
 additional security from a given risk
 class, he can choose that security ran-
 domly from within the class. On the aver-
 age any security so chosen will have
 about the same effect on the expected re-
 turn and riskiness of his portfolio.

 B. THE DISTRIBUTION OF PRICE CHANGES

 1, INTRODUCTION

 The theory of random walks in stock
 prices is based on two hypotheses:
 (1) successive price changes in an indi-

 7 For a more complete formulation of the port-
 folio analysis problem see Markowitz [39].
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 vidual security are independent, and
 (2) the price changes conform to some
 probability distribution. Of the two hy-
 potheses independence is the most impor-
 tant. Either successive price changes are
 independent (or at least for all practical
 purposes independent) or they are not;
 and if they are not, the theory is not
 valid. All the hypothesis concerning the
 distribution says, however, is that the
 price changes conform to some probabili-
 ty distribution. In the general theory of
 random walks the form or shape of the
 distribution need not be specified. Thus
 any distribution is consistent with the
 theory as long as it correctly character-
 izes the process generating the price
 changes.8

 From the point of view of the investor,
 however, specification of the shape of the
 distribution of price changes is extremely
 helpful. In general, the form of the dis-
 tribution is a major factor in determining
 the riskiness of investment in common
 stocks. For example, although two differ-
 ent possible distributions for the price
 changes may have the same mean or ex-
 pected price change, the probability of
 very large changes may be much greater
 for one than for the other.

 The form of the distribution of price
 changes is also important from an aca-
 demic point of view since it provides de-
 scriptive information concerning the na-
 ture of the process generating price
 changes. For example, if very large price

 changes occur quite frequently, it may

 be safe to infer that the economic struc-
 ture that is the source of the price changes
 is itself subject to frequent and sudden
 shifts over time. That is, if the distribu-
 tion of price changes has a high degree of
 dispersion, it is probably safe to infer
 that, to a large extent, this is due to the
 variability in the process generating new
 information.

 Finally, the form of the distribution of
 price changes is important information
 to anyone who wishes to do empirical
 work in this area. The power of a statis-
 tical tool is usually closely related to the
 type of data to which it is applied. In
 fact we shall see in subsequent sections
 that for some probability distributions
 important concepts like the mean and
 variance are not meaningful.

 2. THE BACHELIER-OSBORNE MODEL

 The first complete development of a
 theory of random walks in security prices
 is due to Bachelier [6], whose original
 work first appeared around the turn of
 the century. Unfortunately his work did
 not receive much attention from econo-
 mists, and in fact his model was inde-
 pendently derived by Osborne [42] over
 fifty years later. The Bachelier-Osborne
 model begins by assuming that price
 changes from transaction to transaction
 in an individual security are independ-
 ent, identically distributed random vari-
 ables. It further assumes that transac-
 tions are fairly uniformly spread across
 time, and that the distribution of price
 changes from transaction to transaction
 has finite variance. If the number of
 transactions per day, week, or month is
 very large, then price changes across
 these differencing intervals will be sums
 of many independent variables. Under
 these conditions the central-limit theo-
 rem leads us to expect that the daily,

 8 Of course, the theory does imply that the pa-
 rameters of the distribution should be stationary or
 fixed. As long as independence holds, however, sta-
 tionarity can be interpreted loosely. For example,
 if independence holds in a strict fashion, then for the
 purposes of the investor the random walk model is
 a valid approximation to reality even though the
 parameters of the probability distribution of the
 price changes may be non-stationary.

 For statistical purposes stationarity implies
 simply that the parameters of the distribution should
 be fixed at least for the time period covered by the
 data.
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 weekly, and monthly price changes will
 each have normal or Gaussian distribu-
 tions. Moreover, the variances of the dis-
 tributions will be proportional to the re-
 spective time intervals. For example, if
 e2 is the variance of the distribution of
 the daily changes, then the variance for
 the distribution of the weekly changes
 should be approximately 5oa2.

 Although Osborne attempted to give
 an empirical justification for his theory,
 most of his data were cross-sectional and
 could not provide an adequate test.
 Moore and Kendall, however, have pro-
 vided empirical evidence in support of
 the Gaussian hypothesis. Moore [41, pp.
 116-23] graphed the weekly first differ-
 ences of log price of eight NYSE common
 stocks on normal probability paper. Al-
 though the extreme sections of his graphs
 seem to have too many large price
 changes, Moore still felt the evidence
 was strong enough to support the hy-
 pothesis of approximate normality.

 Similarly Kendall [26] observed that
 weekly price changes in British common
 stocks seem to be approximately nor-
 mally distributed. Like Moore, however,
 he finds that most of the distributions of
 price changes are leptokurtic; that is,
 there are too many values near the mean
 and too many out in the extreme tails.
 In one of his series some of the extreme
 observations were so large that he felt
 compelled to drop them from his subse-
 quent statistical tests.

 3. MANDELBROT AND THE GENERALIZED

 CENTRAL-LIMIT THEOREM

 The Gaussian hypothesis was not seri-

 ously questioned until recently when the
 work of Benoit Mandelbrot first began to

 appear.9 Mandelbrot's main assertion is

 that, in the past, academic research has
 too readily neglected the implications of
 the leptokurtosis usually observed in
 empirical distributions of price changes.

 The presence, in general, of leptokur-
 tosis in the empirical distributions seems
 indisputable. In addition to the results
 of Kendall [26] and Moore [41] cited
 above, Alexander [1] has noted that Os-
 borne's cross-sectional data do not really
 support the normality hypothesis; there
 are too many changes greater than ? 10
 per cent. Cootner [10] has developed a
 whole theory in order to explain the long
 tails of the empirical distributions. Final-
 ly, Mandelbrot [37, Fig. 1] cites other
 examples to document empirical lepto-
 kurtosis.

 The classic approach to this problem
 has been to assume that the extreme
 values are generated by a different mech-
 anism than the majority of the observa-
 tions. Consequently one tries a posteriori
 to find "causal" explanations for the
 large observations and thus to rational-
 ize their exclusion from any tests carried
 out on the body of the data.10 Unlike the
 statistician, however, the investor cannot
 ignore the possibility of large price
 changes before committing his funds, and
 once he has made his decision to invest,
 he must consider their effects on his
 wealth.

 Mandelbrot feels that if the outliers
 are numerous, excluding them takes
 away much of the significance from any
 tests carried out on the remainder of
 the data. This exclusion process is all the
 more subject to criticism since probabil-
 ity distributions are available which ac-
 curately represent the large observations

 9 His main work in this area is [371. References
 to his other works are found through this report

 and in the bibliography.

 10 When extreme values are excluded from the
 sample, the procedure is often called "trimming."
 Another technique which involves reducing the size
 of extreme observations rather than excluding them
 is called "Winsorization," For a discussion see J, W.
 Tukey [45].
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 as well as the main body of the data.
 The distributions referred to are mem-
 bers of a special class which Mandelbrot
 has labeled stable Paretian. The mathe-
 matical properties of these distributions
 are discussed in detail in the appendix to
 this paper. At this point we shall merely
 introduce some of their more important
 descriptive properties.

 Parameters of stable Paretian distri-
 butions.-Stable Paretian distributions
 have four parameters: (1) a location pa-
 rameter which we shall call 3, (2) a scale
 parameter henceforth called y, (3) an
 index of skewness, f, and (4) a measure
 of the height of the extreme tail areas of
 the distribution which we shall call the
 characteristic exponent a."

 When the characteristic exponent a is
 greater than 1, the location parameter a
 is the expectation or mean of the distri-
 bution. The scale parameter - can be any
 positive real number, but A, the index of
 skewness, can only take values in the in-
 terval-I < 3 < 1. When: = O the dis-
 tribution is symmetric. When f > 0 the
 distribution is skewed right (i.e., has a
 long tail to the right), and the degree of
 right skewness is larger the larger the
 value of f. Similarly, when :3 < 0 the dis-
 tribution is skewed left, and the degree
 of left skewness is larger the smaller the
 value of f.

 The characteristic exponent a of a
 stable Paretian distribution determines
 the height of, or total probability con-
 tained in, the extreme tails of the distri-
 bution, and can take any value in the
 interval 0 < a < 2. When a = 2, the rel-
 evant stable Paretian distribution is the

 normal or Gaussian distribution. When a
 is in the interval 0 < a < 2, the extreme
 tails of the stable Paretian distributions
 are higher than those of the normal dis-
 tribution, and the total probability in
 the extreme tails is larger the smaller the
 value of a. The most important conse-
 quence of this is that the variance exists
 (i.e., is finite) only in the extreme case
 a = 2. The mean, however, exists as long
 as a > 1.12

 Mandelbrot's hypothesis states that
 for distributions of price changes in spec-
 ulative series, a is in the interval 1 < a <
 2, so that the distributions have means
 but their variances are infinite. The
 Gaussian hypothesis, on the other hand,
 states that a is exactly equal to 2. Thus
 both hypotheses assume that the distri-
 bution is stable Paretian. The disagree-
 ment between them concerns the value
 of the characteristic exponent a.

 Properties of stable Paretian distribu-
 tions.-Two important properties of sta-
 ble Paretian distributions are (1) stabil-
 ity or invariance under addition, and (2)
 the fact that these distributions are the
 only possible limiting distributions for
 sums of independent, identically distrib-
 uted, random variables.

 By definition, a stable Paretian distri-
 bution is any distribution that is stable
 or invariant under addition. That is,
 the distribution of sums of independent,
 identically distributed, stable Paretian
 variables is itself stable Paretian and,
 except for origin and scale, has the same
 form as the distribution of the individual
 summands. Most simply, stability means
 that the values of the parameters a and

 A remain constant under addition.13
 The property of stability is responsible

 " The derivation of most of the important prop-
 erties of stable Paretian distributions is due to P.
 Levy [29]. A rigorous and compact mathematical
 treatment of the theory can be found in B. V.
 Gnedenko and A. N. Kolmogorov [17]. A more
 comprehensive mathematical treatment can be
 found in Mandelbrot [37],

 12For a proof of these statements see Gnedenko
 and Kolmogorov [171, pp. 179-83.

 13 A more rigorous definition of stability is given
 in the appendix,
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 for much of the appeal of stable Paretian
 distributions as descriptions of empirical
 distributions of price changes. The price
 change of a stock for any time interval
 can be regarded as the sum of the changes
 from transaction to transaction during
 the interval. If transactions are fairly
 uniformly spread over time and if the
 changes between transactions are inde-
 pendent, identically distributed, stable
 Paretian variables, then daily, weekly,
 and monthly changes will follow stable
 Paretian distributions of exactly the
 same form, except for origin and scale.
 For example, if the distribution of daily
 changes is stable Paretian with location
 parameter 8 and scale parameter y, the
 distribution of weekly (or five-day)
 changes will also be stable Paretian with
 location parameter 58 and scale parame-
 ter 5$. It would be very convenient if
 the form of the distribution of price
 changes were independent of the differ-
 encing interval for which the changes
 were computed.

 It can be shown that stability or in-
 variance under addition leads to a most
 important corollary property of stable
 Paretian distributions; they are the only
 possible limiting distributions for sums
 of independent, identically distributed,
 random variables.14 It is well known that
 if such variables have finite variance, the
 limiting distribution for their sum will be
 the normal distribution. If the basic vari-
 ables have infinite variance, however,
 and if their sums follow a limiting dis-
 tribution, the limiting distribution must
 be stable Paretian with 0 < a < 2.

 In light of this discussion we see that
 Mandelbrot's hypothesis can actually
 be viewed as a generalization of the
 central-limit theorem arguments of
 Bachelier and Osborne to the case where

 the underlying distributions of price
 changes from transaction to transaction
 are allowed to have infinite variances. In
 this sense, then, Mandelbrot's version of
 the theory of random walks can be re-
 garded as a broadening rather than a
 contradiction of the earlier Bachelier-
 Osborne model.

 Conclusion.-Mandelbrot's hypothesis
 that the distribution of price changes is
 stable Paretian with characteristic expo-
 nent a < 2 has far reaching implications.
 For example, if the variances of distribu-

 tions of price changes behave as if they
 are infinite, many common statistical
 tools which are based on the assumption
 of a finite variance either will not work
 or may give very misleading answers.
 Getting along without these familiar
 tools is not going to be easy, and before
 parting with them we must be sure that
 such a drastic step is really necessary.
 At the moment, the most impressive
 single piece of evidence is a direct test
 of the infinite variance hypothesis for
 the case of cotton prices. Mandelbrot [37,
 Fig. 2 and pp. 404-7] computed the sam-
 ple second moments of the first differ-
 ences of the logs of cotton prices for
 increasing sample sizes of from 1 to 1,300
 observations. He found that the sample
 moment does not settle down to any
 limiting value but rather continues to
 vary in absolutely erratic fashion, pre-
 cisely as would be expected under his
 hypothesis."5

 As for the special but important case

 14 For a proof see Gnedenko and Kolmogorov
 [17], pp. 162-63.

 15 The second moment of a random variable x is
 just E(x2). The variance is just the second moment
 minus the square of the mean. Since the mean is
 assumed to be a constant, tests of the sample second
 moment are also tests of the sample variance.

 In an earlier privately circulated version of [371
 Mandelbrot tested his hypothesis on various other
 series of speculative prices. Although the results in
 general tended to support his hypothesis, they were
 neither as extensive nor as conclusive as the tests
 on cotton prices.
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 of common-stock prices, no published
 evidence for or against Mandelbrot's the-
 ory has yet been presented. One of our
 main goals here will be to attempt to test
 Mandelbrot's hypothesis for the case of
 stock prices.

 C. THINGS TO COME

 Except for the concluding section, the
 remainder of this paper will be concerned
 with reporting the results of extensive
 tests of the random walk model of stock
 price behavior. Sections III and IV will
 examine evidence on the shape of the
 distribution of price changes. Section III
 will be concerned with common statisti-
 cal tools such as frequency distributions
 and normal probability graphs, while
 Section IV will develop more direct tests
 of Mandelbrot's hypothesis that the
 characteristic exponent a for these dis-
 tributions is less than 2. Section V of the
 paper tests the independence assumption
 of the random-walk model. Finally, Sec-
 tion VI will contain a summary of pre-
 vious results, and a discussion of the im-
 plications of these results from various
 points of view.

 III. A FIRST LOOK AT THE EM-
 PIRICAL DISTRIBUTIONS

 A. INTRODUCTION

 In this section a few simple techniques
 will be used to examine distributions of
 daily stock-price changes for individual
 securities. If Mandelbrot's hypothesis
 that the distributions are stable Paretian
 with characteristic exponents less than 2
 is correct, the most important feature of
 the distributions should be the length of
 their tails. That is, the extreme tail areas
 should contain more relative frequency
 than would be expected if the distribu-
 tions were normal. In this section no
 attempt will be made to decide whether

 the actual departures from normality are
 sufficient to reject the Gaussian hypothe-
 sis. The only goal will be to see if the
 departures are usually in the direction
 predicted by the Mandelbrot hypothesis.

 B. THE DATA

 The data that will be used throughout
 this paper consist of daily prices for each
 of the thirty stocks of the Dow-Jones
 Industrial Average."6 The time periods
 vary from stock to stock but usually run
 from about the end of 1957 to September
 26, 1962. The final date is the same for
 all stocks, but the initial date varies from
 January, 1956 to April, 1958. Thus there
 are thirty samples with about 1,200-
 1,700 observations per sample.

 The actual tests are not performed on
 the daily prices themselves but on the
 first differences of their natural loga-
 rithms. The variable of interest is

 Ut+1 = loge Pt+ - loge Pt , (1)

 where p t+ is the price of the security at
 the end of day t + 1, and pt is the price
 at the end of day t.

 There are three main reasons for using
 changes in log price rather than simple
 price changes. First, the change in log
 price is the yield, with continuous com-
 pounding, from holding the security for
 that day.17 Second, Moore [41, pp. 13-151
 has shown that the variability of simple
 price changes for a given stock is an in-
 creasing function of the price level of the
 stock. His work indicates that taking

 16 The data were very generously supplied by
 Professor Harry B. Ernst of Tufts University.

 17 The proof of this statement goes as follows:

 Pt+=Pt exp (loge Pt+ )

 = Pt exp(loge pt+i-loge Pt )
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 logarithms seems to neutralize most of
 this price level effect. Third, for changes
 less than ? 15 per cent the change in
 log price is very close to the percentage
 price change, and for many purposes it is
 convenient to look at the data in terms
 of percentage price changes.18

 I In working with daily changes in log
 price, two special situations must be
 noted. They are stock splits and ex-divi-
 dend days. Stock splits are handled as
 follows: if a stock splits two for one on
 day t, its actual closing price on day t is
 doubled, and the difference between the
 logarithm of this doubled price and the
 logarithm of the closing price for day
 t - 1 is the first difference for day t. The
 first difference for day t + 1 is the differ-
 ence between the logarithm of the closing
 price on day t + 1 and the logarithm of
 the actual closing price on day t, the day
 of the split. These adjustments reflect
 the fact that the process of splitting a
 stock involves no change either in the
 asset value of the firm or in the wealth
 of the individual shareholder.

 On ex-dividend days, however, other
 things equal, the value of an individual
 share should fall by about the amount
 of the dividend. To adjust for this the
 first difference between an ex-dividend
 day and the preceding day is computed
 as

 Ut+l = loge (pt+1 + d) -loge pt,

 where d is the dividend per share."
 One final note concerning the data is

 in order. The Dow-Jones Industrials are
 not a random sample of stocks from the

 New York Stock Exchange. The compo-
 nent companies are among the largest

 and most important in their fields. If the

 behavior of these blue-chips stocks differs
 consistently from that of other stocks in
 the market, the empirical results to be
 presented below will be strictly appli-
 cable only to the shares of large impor-
 tant companies.

 One must admit, however, that the
 sample of stocks is conservative from the
 point of view of the Mandelbrot hypoth-
 esis, since blue chips are probably more
 stable than other securities. There is
 reason to expect that if such a sample
 conforms well to the Mandelbrot hypoth-
 esis, a random sample would fit even
 better.

 C. FREQUENCY DISTRIBUTIONS

 One very simple way of analyzing the
 distribution of changes in log price is to
 construct frequency distributions for the
 individual stocks. That is, for each stock
 the empirical proportions of price changes
 within given standard deviations of the
 mean change can be computed and com-
 pared with what would be expected if the
 distributions were exactly normal. This
 is done in Tables 1 and 2. In Table 1 the
 proportions of observations within 0.5,
 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0 stand-
 ard deviations of the mean change, as
 well as the proportion greater than 5
 standard deviations from the mean, are
 computed for each stock. In the first line
 of the body of the table the proportions
 for the unit normal distribution are
 given.

 Table 2 gives a comparison of the unit
 normal and the empirical distributions.

 18 Since, for our purposes, the variable of interest
 will always be the change in log price, the reader
 should note that henceforth when the words "price
 change" appear in the text, we are actually referring
 to the change in log price.

 19 I recognize that because of tax effects and other
 considerations, the value of a share may not be ex-
 pected to fall by the full amount of the dividend.
 Because of uncertainty concerning what the correct
 adjustment should be, the price changes on ex-divi-
 dend days were discarded in an earlier version of the
 paper. Since the results reported in the earlier ver-
 sion differ very little from those to be presented
 below, it seems that adding back the full amount
 of the dividend produces no important distortions
 in the empirical results.
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 Each entry in this table was computed

 by taking the corresponding entry in
 Table 1 and subtracting from it the entry
 for the unit normal distribution in Table
 1. For example, the entry in column (1)
 Table 2 for Allied Chemical was found
 by subtracting the entry in column (1)
 Table 1 for the unit normal, 0.3830, from
 the entry in column (1) Table 1 for
 Allied Chemical, 0.4595.

 A positive number in Table 2 should
 be interpreted as an excess of relative
 frequency in the empirical distribution
 over what would be expected for the
 given interval if the distribution were
 normal. For example, the entry in col-

 umn (1) opposite Allied Chemical im-
 plies that the empirical distribution con-
 tains about 7.6 per cent more of the
 total frequency within one-half standard
 deviation of the mean than would be
 expected if the distribution were normal.
 The number in column (9) implies that
 in the empirical distribution about 0.16
 per cent more of the total frequency is
 greater than five standard deviations
 from the mean than would be expected
 under the normal or Gaussian hypothe-
 SiS.

 Similarly, a negative number in the
 table should be interpreted as a defi-
 ciency of relative frequency within the

 TABLE 1

 FREQUENCY DISTRIBUTIONS

 INTERVALS

 STOCKS

 0.5 S 1.0 S 1.5 S 2.0 S 2.5 S 3.0 S 4.0 S 5.0 S >5.0 S

 (1) (2) (3) (4) (5) (6) (7) (8) (9)

 Unit normal ........ . 0.3830 0.6826 0.8664 0.9545 0.9876 0.9973 0.999938 0.9999994 0.0000006
 Allied Chemical ........... . 4595 .7449 .8782 .9550 .9755 .9869 0.996729 0.9983647 .0016353
 Alcoa .................. .4378 .7260 .8706 .9420 .9765 .9941 1.000000 1.0000000 .0000000
 American Can ............ .4938 .7695 .8983 .9491 .9672 .9844 0.995078 0.9975390 .0024610
 A.T.&T .................. .5824 .8162 .9237 .9582 .9795 .9860 0.992617 0.9950779 .0049221
 American Tobacco ........ .5394 .7818 .8893 .9462 .9704 .9844 0.994544 0.9968823 .0031177
 Anaconda ................ .4300 .7075 .8785 .9522 .9757 .9933 0.999162 1.0000000 .0000000
 Bethlehem Steel .......... 4792 .7350 .8850 .9483 .9750 .9875 0.996667 0.9991667 .0008333
 Chrysler ................. .4350 .7264 .8794 .9486 .9781 .9905 0.997636 0.9994090 .0005910
 Du Pont ................. .4336 .7257 .8825 .9469 .9775 .9936 0.997586 0.9991955 .0008045
 Eastman Kodak .......... .4410 .7472 .8780 .9467 .9733 .9895 0.998384 0.9983845 .0016155
 General Electric .......... .4631 .7460 .8771 .9427 .9775 .9870 0.997047 0.9994093 .0005907
 General Foods ............ . 4489 .7493 .8871 .9467 .9751 .9844 0.997869 0.9992898 .0007102
 General Motors ........... .4716 .7455 .8859 .9571 .9792 .9910 0.995851 0.9979253 .0020741
 Goodyear ................ . 4638 .7487 .8898 .9509 .9854 .9914 0.996558 0.9982788 .0017212
 International Harvester... .4408 .7450 .8967 .9475 .9750 .9875 0.996667 0.9991667 .0008338
 International Nickel .... . .4722 .7635 .8833 .9413 .9686 .9871 0.995173 1.0000000 .0000000
 International Paper ....... .4444 .7498 .8742 .9433 .9758 .9869 0.996545 1.0000000 .0000000
 Johns Manville ........... .4365 .7377 .8730 .9485 .9809 .9909 0.997510 0.9991701 .0008299
 Owens Illinois ........... .4778 .7389 .8909 .9466 .9717 .9838 0.997575 0.9991916 .0008084
 Procter & Gamble ..... . .5017 .7706 .8887 .9378 .9710 .9862 0.995853 0.9986178 .0013822
 Sears .................. .5388 .7856 .9021 .9490 .9701 .9830 0.993528 0.9959547 .0040453
 Standard Oil (Calif.) ...... .4584 .7348 .8724 .9439 .9764 .9917 0.997047 0.9994093 .0005907
 Standard Oil (N.J.) ....... .5035 .7751 .8953 .9559 .9766 .9896 0.997405 0.9982699 .0017301
 Swift & Co ............... . 4647 .7476 .8817 .9405 .9703 .9875 0.997234 1.0000000 .0000000
 Texaco .................. .4599 .7282 .8697 .9517 .9750 .9879 0.998274 1.0000000 .0000000
 Union Carbide .. . .4168 .7191 .8783 .9401 .9785 .9946 0.999106 1.0000000 .0000000
 United Aircraft ........... .4583 .7483 .8858 .9500 .9808 .9908 0.997500 0.9991667 .0008333
 U.S. Steel . ..... . .4125 .6933 .8758 .9508 .9817 .9933 0.999167 1.0000000 .0000000
 Westinghouse ............ .4392 .7320 .8847 .9503 .9765 .9903 0.997928 0.9986188 .0013812
 Woolworth ....... 0 0. 4969 0. 7668 0. 8844 0. 9474 0. 9737 0. 9841 0.996540 0.9986159 0.0013841

 Averages ....... 0.4667 0.7469 0.8847 0.9478 0.9756 0.9886 0.996959 0.9988368 0.0011632
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 given interval. For example, the number
 in column (5) opposite Allied Chemical
 implies that about 1.21 per cent less total
 frequency is within 2.5 standard devia-

 tions of the mean than would be expected
 under the Gaussian hypothesis. This
 means there is about twice as much fre-
 quency beyond 2.5 standard deviations

 than would be expected if the distribu-
 tion were normal.

 The most striking feature of the tables
 is the presence of some degree of lepto-
 kurtosis for every stock. In every case
 the empirical distributions are more
 peaked in the center and have longer
 tails than the normal distribution. The
 pattern is best illustrated in Table 2. In
 columns (1), (2), and (3) all the numbers
 are positive, implying that in the empiri-
 cal distributions there are more observa-
 tions within 0.5, 1.0, and 1.5 standard

 deviations than would be expected under
 the Gaussian hypothesis. In columns (4)
 through (8) the overwhelming prepon-
 derance of negative numbers indicates
 that there is a general deficiency of rela-
 tive frequency within any interval 2 to 5
 standard deviations from the mean and
 thus a general excess of relative fre-

 quency beyond these points. In column
 (9) twenty-two out of thirty of the num-
 bers are positive, pointing to a general
 excess of relative frequency greater than
 five standard deviations from the mean.

 At first glance it may seem that the
 absolute size of the deviations from nor-
 mality reported in Table 2 is not im-
 portant. For example, the last line of the
 table tells us that the excess of relative
 frequency beyond five standard devia-
 tions from the mean is, on the average,
 about 0.12 per cent. This is misleading,

 TABLE 2

 COMPARISON OF EMPIRICAL FREQUENCY DISTRIBUTIONS WITH UNIT NORMAL

 INTERVALS

 STOCK
 OS.5 lOS 1.5 S 2.OS 2.5 S 3.0 S 4.0 S 5.0 S >5.0 S
 (1) (2) (3) (4) (5) (6) (7) (8) (9)

 Allied Chemical ............ 0.0765 0.0623 0.0118 0.0005 -0.0121 -00.0104 -0.003209 -0.0016347 0.0016347
 Alcoa ......... .0548 .0434 .0042 - .0125 - .0111 - .0032 .000062 .0000006 - .0000006
 American Can ............. .1108 .0669 .0319 - .0054 - .0204 - .0129 - .004860 - .0024604 .0024604
 A.T.&T ................... .1994 .1336 .0573 .0037 - .0081 - .0112 - .007321 - .0049215 .0049215
 American Tobacco .......... .1564 .0992 .0229 - .0083 - .0172 - .0129 - .005394 - .0031171 .0031171
 Anaconda ................. .0470 .0249 .0121 - .0023 - .0119 - .0040 - .000776 .0000006 - .0000006
 Bethlehem Steel ............ .0962 .0524 .0186 - .0062 - .0126 - .0098 - .003271 - .0008327 .0008327
 Chrysler .................. .0520 .0438 .0130 - .0059 - .0095 - .0068 - .002302 - .0005904 .0005904
 Du Pont .................. .0506 .0431 .0161 - .0076 - .0101 - .0037 - .002351 - .0008039 .0008039
 Eastman Kodak ........... .0580 .0646 .0116 - .0078 - .0142 - .0078 - .001553 - .0016149 .0016149
 General Electric ........... .0801 .0634 .0107 - .0118 - .0100 - .0103 - .002891 - .0005901 .0005901
 General Foods ............. .0659 .0667 .0207 - .0078 - .0125 - .0129 - .002069 - .0007096 .0007096
 General Motors ............ .0886 .0629 .0195 .0026 - .0083 - .0063 - .004087 - .0020749 .0020741
 Goodyear ................. .0808 .0661 .0234 - .0035 - .0022 - .0059 - .003380 - .0017206 .0017206
 International Harvester ... . .0578 .0624 .0303 - .0070 - .0126 - .0098 - .003271 - .0008327 .0008327
 International Nickel ........ . 0892 .0809 .0169 - .0132 - .0190 - .0102 - .004765 .0000006 - .0000006
 International Paper ......... .0614 .0672 .0078 - .0112 - .0118 - .0104 - .003393 .0000006 - .0000006
 Johns Manville ............ .0535 .0551 .0066 - .0059 - .0067 - .0064 - .002428 - .0008293 .0008293
 Owens Illinois .............. .0948 .0563 .0245 - .0078 - .0159 - .0135 - .002363 - .0008078 .0008078
 Procter & Gamble .......... .1187 .0880 .0223 - .0167 - .0166 - .0111 - .004084 - .0013822 .0013822
 Sears .................... .1558 .1030 .0537 - .0055 - .0175 - .0143 - .006411 - .0040447 .0040447
 Standard Oil (Calif.) ........ .0754 .0522 .0060 - .0106 - .0112 - .0056 - .002891 - .0005901 .0005901
 Standard Oil (N.J.) ......... .1204 .0925 .0289 .0014 - .0109 - .0077 - .002533 - .0017295 .0017295
 Swift & Co ................. . 0817 .0650 .0153 - .0140 - .0173 - .0097 - .002704 .0000006 - .0000006
 Texaco .................... .0769 .0456 .0033 - .0028 - .0126 - .0094 - .001664 .0000006 - .0000006
 Union Carbide ............. .0338 .0365 .0119 - .0144 - .0091 - .0027 - .000832 .0000006 - .0000006
 United Aircraft ............ .0753 .0657 .0194 - .0045 - .0068 - .0065 - .002438 - .0008327 .0008327
 U.S. Steel ................. .0295 .0107 .0094 - .0037 - .0059 - .0040 - .000771 .0000006 - .0000006
 Westinghouse .............. .0562 .0494 .0183 - .0042 - .0111 - .0070 - .002010 - .0013806 .0013806
 Woolworth ................ 0.1139 0.0842 0.0180 -0.0071 -0.0139 -0.0132 -0.003398 -0.0013835 0.0013835

 Averages ................ 0.0837 0.0636 0.0183 -0.0066 -0.0120 -0.0086 -0.002979 -0.0011632 -0.0011632
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 however, since under the Gaussian hy-

 pothesis the total predicted relative fre-

 quency beyond five standard deviations
 is 0.00006 per cent. Thus the actual

 excess frequency is 2,000 times larger
 than the total expected frequency.

 Figure 1 provides a better insight into

 the nature of the departures from nor-
 mality in the empirical distributions. The
 dashed curve represents the unit normal
 density function, whereas the solid curve
 represents the general shape of the em-
 pirical distributions. A consistent depar-
 ture from normality is the excess of ob-
 servations within one-half standard de-
 viation of the mean. On the average there
 is 8.4 per cent too much relative fre-

 quency in this interval. The curves of the
 empirical density functions are above the
 curve for the normal distribution. Before
 1.0 standard deviation from the mean,
 however, the empirical curves cut down

 through the normal curve from above.
 Although there is a general excess of rela-

 tive frequency within 1.0 standard devi-
 ation, in twenty-four out of thirty cases
 the excess is not as great as that within
 one-half standard deviation. Thus the
 empirical relative frequency between 0.5
 and 1.0 standard deviations must be less
 than would be expected under the Gauss-
 ian hypothesis.

 Somewhere between 1.5 and 2.0 stand-
 ard deviations from the mean the em-
 pirical curves again cross through the
 normal curve, this time from below. This
 is indicated by the fact that in the em-
 pirical distributions there is a consistent
 deficiency of relative frequency within
 2.0, 2.5, 3.0, 4.0, and 5.0 standard devia-
 tions, implying that there is too much
 relative frequency beyond these inter-
 vals. This is, of course, what is meant by
 long tails.

 The results in Tables 1 and 2 can be
 cast into a different and perhaps more

 illuminating form. In sampling from a
 normal distribution the probability that
 an observation will be more than two
 standard deviations from the mean is
 0.04550. In a sample of size N the expect-
 ed number of observations more than
 two standard deviations from the mean
 is N X 0.04550. Similarly, the expected
 numbers greater than three, four, and
 five standard deviations from the mean
 are, respectively, N X 0.0027, N X
 0.000063, and N X 0.0000006. Following
 this procedure Table 3 shows for each

 -3 -2 -I 0 1 2 3

 Standardized Variable

 FIG. 1.-Comparison of empirical and unit nor-
 mal probability distributions.

 stock the expected and actual numbers of
 observations greater than 2, 3, 4, and 5
 standard deviations from their means.

 The results are consistent and impres-
 sive. Beyond three standard deviations
 there should only be, on the average,
 three to four observations per security.
 The actual numbers range from six to
 twenty-three. Even for the sample sizes
 under consideration the expected number
 of observations more than four standard
 deviations from the mean is only about
 0.10 per security. In fact for all stocks
 but one there is at least one observation
 greater than four standard deviations
 from the mean, with one stock having as
 many as nine observations in this range.

 In simpler terms, if the population of
 price changes is strictly normal, on the
 average for any given stock we would
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 expect an observation greater than 4
 standard deviations from the mean about
 once every fifty years. In fact observa-
 tions this extreme are observed about
 four times in every five-year period. Sim-
 ilarly, under the Gaussian hypothesis for
 any given stock an observation more
 than five standard deviations from the
 mean should be observed about once
 every 7,000 years. In fact such observa-
 tions seem to occur about once every
 three to four years.

 These results can be put into the form
 of a significance test. Tippet [44] in 1925
 calculated the distribution of the largest
 value in samples of size 3-1,000 from a
 normal population. In Table 4 his results
 for N = 1,000 have been used to find
 the approximate significance levels of the
 most extreme positive and negative first
 differences of log price for each stock.
 The significance levels are only approxi-
 mate because the actual sample sizes are
 greater than 1,000. The effect of this is

 TABLE 3

 ANALYSIS OF EXTREME TAIL AREAS IN TERMS OF NUMBER OF OBSERVATIONS

 RATHER THAN RELATIVE FREQUENCIES

 INTERVAL

 STOCK N >2 S > 3S >4 S >5 S

 Expected Actual Expected Actual Expected Actual Expected Actual
 No. No. No. No. No. No. No. No.

 Allied Chemical ............ 1,223 55.5 55 3.3 16 0.08 4 0.0007 2
 Alcoa .................... 1,190 54.1 69 3.2 7 .07 0 .0007 0
 American Can ............. 1,219 55.5 62 3.3 19 .08 6 .0007 3
 A.T.&T ................... 1,219 55.5 51 3.3 17 .08 9 .0007 6
 American Tobacco ......... 1, 283 58.4 69 3.5 20 .08 7 .0008 4
 Anaconda ................. 1,193 54.3 57 3.2 8 .08 1 .0007 0
 Bethlehem Steel .......... 1,200 54.6 62 3.2 15 .08 4 .0007 1
 Chrysler .................. 1,692 77.0 87 4.6 16 .11 4 .0010 1
 Du Pont .................. 1, 243 56.6 66 3.4 8 .08 3 .0007 1
 Eastman Kodak ........... 1,238 56.3 66 3.3 13 .08 2 .0007 2
 General Electric ........... 1, 693 77.0 97 4.6 22 .11 5 .0010 1
 General Foods ............. 1,408 64.1 75 3.8 22 .09 3 .0008 1
 General Motors ............ 1,446 65.8 62 3.9 13 .09 6 .0009 3
 Goodyear ................. 1,162 52.9 57 3.1 10 .07 4 .0007 2
 International Harvester.... . 1,200 54.6 63 3.2 15 .08 4 .0007 1
 International Nickel ........ 1,243 56.5 73 3.4 16 .08 6 .0007 0
 International Paper ........ 1,447 65.8 82 3.9 19 .09 5 .0009 0
 Johns Manville ............ 1,205 54.8 62 3.2 11 .08 3 .0007 1
 Owens Illinois ............. 1,237 56.3 66 3.3 20 .08 3 .0007 1
 Procter & Gamble ......... 1,447 65.8 90 3.9 20 .09 6 .0009 2
 Sears .................... 1,236 56.2 63 3.3 21 .08 8 .0007 5
 Standard Oil (Calif.) ....... 1,693 77.0 95 4.6 14 .11 5 .0010 1
 Standard Oil (N.J.) ... .... 1,156 52.5 51 3.1 12 .07 3 .0007 2
 Swift & Co ................ 1,446 65.8 86 3.9 18 .09 4 .0009 0
 Texaco ................... 1,159 52.7 56 3.1 14 .07 2 .0007 0
 Union Carbide ............ 1,118 50.9 67 3.0 6 .07 1 .0007 0
 United Aircraft ............ 1,200 54.6 60 3.2 11 .08 3 .0007 1
 U.S. Steel ................. 1,200 54.6 59 3.2 8 .08 1 .0007 0
 Westinghouse ............. 1, 448 65.9 72 3.9 14 .09 3 .0009 2
 Woolworth ................ 1,445 65.7 78 3.9 23 0.09 5 0.0009 2

 Totals ................ ....... 1, 787.4 2,058 105.8 448 2.51 120 0.0233 45

 * Total sample size.
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 to overestimate the significance level,
 since in samples of 1,300 an extreme
 value greater than a given size is more
 probable than in samples of 1,000. In
 most cases, however, the error intro-
 duced in this way will affect at most the
 third decimal place and hence is negligi-
 ble in the present context.

 Columns (1) and (4) in Table 4 show
 the most extreme negative and positive
 changes in log price for each stock. Col-
 umns (2) and (5) show these values
 measured in units of standard deviations
 from their means. Columns (3) and (6)
 show the significance levels of the ex-
 treme values. The significance levels
 should be interpreted as follows: in sam-
 ples of 1,000 observations from a normal
 population on the average in a propor-

 tion P of all samples, the most extreme
 value of a given tail would be smaller in
 absolute value than the extreme value
 actually observed.

 As would be expected from previous
 discussions, the significance levels in
 Table 4 are very high, implying that the
 observed extreme values are much more
 extreme than would be predicted by the
 Gaussian hypothesis.

 D. NORMAL PROBABILITY GRAPHS

 Another sensitive tool for examining
 departures from normality is probability
 graphing. If u is a Gaussian random vari-
 able with mean y and variance a-2, the
 standardized variable

 Z -,u ((2)
 TABLE 4

 SIGNIFICANCE TESTS FOR EXTREME VALUES

 Smallest Standardized Largest Standardized
 Stock Value Variable P Value Variable P

 (1) (2) (3) (4) (5) (6)

 Allied Chemical .-0.07178 - 5.012 0.99971 0.08377 5.820 0.99999
 Alcoa. .... - .05314 - 3.381 0.71391 .06188 3.945 0.95304
 American Can .............. - .06230 - 5.446 0.99997 .06752 5.853 0.99999
 A.T.&T .... .......... - .10376 -10.342 1.00000 09890 9.724 1.00000
 American Tobacco ...... . - .08004 - 6.678 1.00000 .07238 5.949 0.99999
 Anaconda ............... - .05733 - 3.851 0.93020 .06004 4.015 0.96882
 Bethlehem Steel .......... - .07250 - 5.571 0.99999 .06195 4.748 0.99870
 Chrysler ................ - .08049 - 4.660 0.99870 .10085 5.853 0.99999
 Du Pont ................ - .05990 - 5.843 0.99999 .05148 4.950 0.99952
 Eastman Kodak .......... - .04434 - 3.399 0.71391 .07788 5.832 0.99999
 General Electric ....... . - .06466 - 5.135 0.99983 .05647 4.456 0.99460
 General Foods ........... - .04683 - 3.937 0.95304 .06246 5.065 0.99983
 General Motors .......... - .09764 - 7.761 1.00000 .08292 6.547 1.00000
 Goodyear ............... - .09459 - 5.919 0.99999 .17435 10.879 1.00000
 International Harvester. . . - .08701 - 6.290 0.99999 .06870 4.880 0.99952
 International Nickel ...... - .05917 - 4.917 0.99952 .05670 4.628 0.99789
 International Paper...... . - .05072 - 4.219 0.98674 .05327 4.454 0.99460
 Johns Manville .......... - .06868 - 4.386 0.99460 .11935 7.575 1.00000
 Owens Illinois ............ - .06372 - 5.195 0.99990 .06062 4.881 0.99952
 Procter & Gamble ........ - .06351 - 5.504 0.99998 .06560 5.559 0.99998
 Sears ................... - .10728 - 9.338 1.00000 .06062 5.148 0.99983
 Standard Oil (Calif.) ...... - .06333 - 4.793 0.99921 .06738 5.056 0.99983
 Standard Oil (N.J.) ....... - .10318 - 9.275 1.00000 .10073 9.013 1.00000
 Swift & Co ............... - .06752 - 4.761 0.99921 .06283 4.418 0.99460
 Texaco .................. - .05932 - 4.650 0.99789 .05476 4.193 0.98674
 Union Carbide ........... - .04556 - 4.396 0.99460 .03943 3.783 0.93020
 United Aircraft .......... - .15234 - 8.878 1.00000 .08490 4.939 0.99952
 U.S. Steel ............... - .05386 - 3.968 0.96882 .05550 4.091 0.97955
 Westinghouse ............ - .08037 - 5.415 0.99997 .08630 5.808 0.99999
 Woolworth ...... -0.06744 - 5.890 0.99999 0.08961 7.743 1.00000
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 will be unit normal. Since z is just a
 linear transformation of u, the graph of
 z against u is just a straight line

 The relationship between z and u can

 be used to detect departures from nor-
 mality in the distribution of u. If us, i =
 1, . . ., N are N sample values of the var-
 iable u arranged in ascending order, then

 a particular ui is an estimate of the f
 fractile of the distribution of u, where
 the value of f is given by20

 f ( 3i- -1) 3
 =(3N+lY (3)

 Now the exact value of z for the f
 fractile of the unit normal distribution
 need not be estimated from the sample
 data. It can be found easily either in
 any standard table or (much more rap-
 idly) by computer. If X is a Gaussian
 random variable, then a graph of the
 sample values of u against the values of
 z derived from the theoretical unit nor-
 mal cumulative distribution function
 (c.d.f.) should be a straight line. There
 may, of course, be some departures from
 linearity due to sampling error. If the de-
 partures from linearity are extreme, how-
 ever, the Gaussian hypothesis for the
 distribution of u should be questioned.

 The procedure described above is called
 normal probability graphing. A normal
 probability graph has been constructed
 for each of the stocks used in this report,
 with u equal, of course, to the daily first
 difference of log price. The graphs are
 found in Figure 2.

 The scales of the graphs in Figure 2

 are determined by the two most extreme
 values of u and z. The origin of each
 graph is the point (Umin, Zmin), where

 Umin and Zmin are the minimum values of
 u and z for the particular stock. The last
 point in the upper right-hand corner of

 each graph is (umax, Zmax). Thus if the
 Gaussian hypothesis is valid, the plot of
 z against u should for each security ap-
 proximately trace a 450 straight line from
 the origin.21

 Several comments concerning the
 graphs can be made immediately. First,

 probability graphing is just another way
 of examining an empirical frequency dis-
 tribution, and there is a direct relation-
 ship between the frequency distributions

 examined earlier and the normal proba-
 bility graphs. When the tails of empirical
 frequency distributions are longer than
 those of the normal distribution, the
 slopes in the extreme tail areas of the
 normal probability graphs should be

 lower than those in the central parts of
 the graphs, and this is in fact the case.
 That is, the graphs in general take the
 shape of an elongated S with the curva-
 ture at the top and bottom varying
 directly with the excess of relative fre-
 quency in the tails of the empirical dis-
 tribution.

 Second, this tendency for the extreme
 tails to show lower slopes than the main
 portions of the graphs will be accentu-
 ated by the fact that the central bells of
 the empirical frequency distributions are
 higher than those of a normal distribu-

 tion. In this situation the central por-
 tions of the normal probability graphs
 should be steeper than would be the case 20 This particular convention for estimating f is

 only one of many that are available. Other popular
 conventions are i/(N + 1), (i - 4)/(N + 1), and
 (i - ')/N. All four techniques give reasonable esti-
 mates of the fractiles, and with the large samples
 of this report, it makes very little difference which
 specific convention is chosen. For a discussion see
 E. J. Gumbel [20, p. 15] or Gunnar Blom [8, pp.
 138-46].

 21 The reader should note that the origin of every
 graph is an actual sample point, even if it is not
 always visible in the graphs because it falls at the
 point of intersection of the two axes. It is probably
 of interest to note that the graphs in Figure 2 were
 produced by the cathode ray tube of the University
 of Chicago's I.B.M. 7094 computer.
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 FIG. 2.-Normal probability graphs for daily changes in log price of each security. Horizontal axes of
 graphs show u, values of the daily changes in log price; vertical axes show z, values of the unit normal
 variable at different estimated fractile points.
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 if the underlying distributions were
 strictly normal. This sort of departure
 from normality is evident in the graphs.

 Finally, before the advent of the Man-
 delbrot hypothesis, some of our normal
 probability graphs would have been con-
 sidered acceptable within a hypothesis of
 "approximate" normality. This is true,
 for example, for Anaconda and Alcoa.
 It is not true, however, for most of the
 graphs. The tail behavior of stocks such
 as American Telephone and Telegraph
 and Sears is clearly inconsistent with any
 simple normality hypothesis. The em-
 phasis is on the word simple. The natural
 next step is to consider complications of
 the Gaussian model that could give rise
 to departures from normality of the type
 encountered.

 E. TWO POSSIBLE ALTERNATIVE

 EXPLANATIONS OF DEPARTURES

 FROM NORMALITY

 1. MIXTURE OF DISTRIBUTIONS

 Perhaps the most popular approach to
 explaining long-tailed distributions has
 been to hypothesize that the distribution
 of price changes is actually a mixture of
 several normal distributions with pos-
 sibly the same mean, but substantially
 different variances. There are, of course,
 many possible variants of this line of
 attack, and little can be done to test
 them unless the investigator is prepared
 to specify some details of the mechanism
 instead of merely talking vaguely of
 "contamination." One such plausible
 mechanism is the following suggested by
 Lawrence Fisher of the Graduate School
 of Business, University of Chicago.

 It is possible that the relevant unit
 of time for the generation of information
 bearing on stock prices is the chrono-
 logical day rather than the trading day.
 Political and economic news, after all,
 occurs continuously, and if it is assimi-

 lated continuously by investors, the vari-
 ance of the distribution of price changes
 between two points in time would pos-
 sibly be proportional to the actual num-
 ber of days elapsed rather than to the
 number of trading days. Thus in our
 tests a mixture of distributions would be
 produced by the fact that changes in log
 price from Friday (close) to Monday
 (close) involve three chronological days
 while the changes during the week in-
 volve only one chronological day.

 To test this hypothesis, eleven stocks
 were randomly chosen from the sample
 of thirty, and for each stock two arrays
 were set up. One array contained changes

 involving only one chronological day.
 These are, of course, the daily changes
 from Monday to Friday of each week.
 The other array contained changes in-
 volving more than one chronological day.
 These include Friday-to-Monday changes
 and changes across holidays

 Table 5 gives a comparison of the total
 variances for each type of price change.
 Column (1) shows the variances for
 changes involving one chronological day.
 Column (2) contains the variances for
 weekend and holiday changes. Column
 (3) shows the ratio of column (2) to col-
 umn (1). If the chronological day rather
 than the trading day were the relevant

 unit of time, then, according to the well-
 known law for the variance of sums of
 independent variables, the variance of
 the weekend and holiday changes should
 be a little less than three times the vari-
 ance of the day-to-day changes within
 the week. It should be a little less than

 three because three days pass between
 Friday (close) and Monday (close), but
 holidays normally involve a lapse of only
 two days. Actually, however, it turns out
 that the weekend and holiday variance
 is not three times but only about 22 per

This content downloaded from 129.199.200.94 on Fri, 23 Sep 2016 09:47:48 UTC
All use subject to http://about.jstor.org/terms



 56 THE JOURNAL OF BUSINESS

 cent greater than the within week vari-
 ance-a rather small discrepancy.22

 However, for the moment let us con-
 tinue under the assumption that the
 weekend and holiday changes and the
 changes within the week come from dif-
 ferent normal distributions. This implies
 that the normal probability graphs for
 the weekend and daily changes should
 each be straight lines, even though the
 combined distributions plot as elongated
 S's. In fact when the within-week and

 weekend changes were plotted separate-
 ly, the graphs turned out to be of exactly
 the same form as the graph for the two
 distributions combined. The same de-
 partures from normality were present
 and the same elongated S shapes oc-
 curred.

 As an example, Figure 3 shows three
 normal probability graphs for Procter
 and Gamble.23 The first shows the graph
 of the first differences of log price for
 daily changes within the week. The sec-
 ond is the graph of Friday-to-Monday
 changes and of changes across holidays.

 The third is the combined graph for
 changes where the differencing interval
 is the trading day and chronological time
 is ignored.

 The conclusion drawn from the above
 discussion is that it makes no substantial
 difference whether weekend and holiday
 changes are considered separately or to-
 gether with the daily changes within the
 week. The nature of the tails of the dis-
 tribution seems the same under each
 type of analysis.

 2. CHANGING PARAMETERS

 Another popular explanation of long-
 tailed empirical distributions is non-sta-
 tionarity. It may be that the distribution
 of price changes at any point in time is
 normal, but across time the parameters

 TABLE 5

 VARIANCE COMPARISON OF DAILY AND WEEKEND CHANGES

 Weekend

 Stock Daily Weekend Variance/
 Variance Variance Daily

 Variance

 (1) (2) (3)

 Alcoa .0.000247 0.000252 1.020
 A.T.&T ..000091 .000105 1.154
 Anaconda ..000212 .000252 1.189
 Chrysler ..000278 .000363 1.306
 International Harvester. . .000186 .000226 1.215
 International Nickel .000146 .000145 0.993
 Procter & Gamble .000125 .000178 1.424
 Standard Oil (Calif.) .000162 .000215 1.327
 Standard Oil (N.J.) .000114 .000153 1.342
 Texaco ..000153 .000209 1.366
 U.S. Steel .0.000176 0.000198 1.125

 22 The relative unimportance of the weekend
 effect is also documented, in a different way, by
 Godfrey, Granger, and Morgenstern [18.1

 23 The reader will note that the normal proba-
 bility graphs of Figure 3 (and also Figure 4) follow
 the more popular convention of showing the c.d.f.
 on the vertical axis rather than the standardized
 variable z. Since there is a one-to-one correspondence
 between values of z and points on the c.d.f., from a
 theoretical standpoint it is a matter of indifference
 as to which variable is shown on the vertical axis.
 From a practical standpoint, however, when the
 graphs are done by hand it is easier to use "proba-
 bility paper" and the c.d.f. When the graphs are
 done by computer, it is easier to use the standard-
 ized variable z.
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 FIG. 3.-Daily, weekend, and combined normal probability graphs for Procter & Gamble. Horizontal
 axes show u, values of the daily changes in log price; vertical axes show fractiles of the c.d.f.
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 of the distribution change. A company
 may become more or less risky, and this
 may bring about a shift in the variance
 of the first differences. Similarly, the
 mean of the first differences can change
 across time as the company's prospects
 for future profits follow different paths.
 This paper will consider only changes in
 the mean.

 If a shift in the mean change in log

 price of a daily series is to persist for any
 length of time, it must be small, unless
 the eventual change in price is to be as-
 tronomical. For example, a stock's price
 will double in less than four months if
 the mean of the daily changes in log price
 shifts from zero to 0.01. It is not that
 large changes in the mean are uninterest-
 ing. It is just that unless the eventual
 price change is to be phenomenal, a large
 change in the mean will not persist long
 enough to be identified. The basic prob-
 lem is one of identification. "Trends"
 that do not last very long are numerous.
 It is usually difficult to explain these

 short "trends" plausibly whether the

 eventual price change is large or small.

 On the other hand, changes in the mean
 that persist are presumably identifiable
 by their very persistence. It is not par-
 ticularly unreasonable to treat a period
 of, say, a year or more that shows a fairly
 steady trend differently from other pe-
 riods.

 In an effort to test the non-stationarity

 hypothesis, five stocks were chosen which
 seemed to show changes in trend that
 persisted for rather long periods of time
 during the period covered by this study.24
 "Trends" were "identified" simply by

 examining a graph of the stock's price
 during the sampling period. The proce-

 dure, though widely practiced, is of
 course completely arbitrary.

 The results, however, are quite inter-
 esting. For each stock, normal probability
 graphs were constructed for each sepa-
 rate trend period. In all cases the results
 were the same; each of the subperiods of
 different apparent trend showed exactly
 the same type of tail behavior as the
 total sample of price changes for the
 stock for the entire sampling period.

 As an example three normal probabil-
 ity graphs for American Telephone and
 Telegraph are presented in Figure 4. The
 first covers the time period November
 25, 1957-December 11, 1961, when the
 mean of the distribution of first differ-
 ences of log price was 0.00107. The second
 covers the period December 11, 1961-
 September 24, 1962, when the mean was
 -0.00061. The third is the graph of the
 total sample with over-all mean 0.000652.
 As was typical of all the stocks the graphs
 are extremely similar. The same type of
 elongated S appears in all three.

 Thus it seems that the behavior of the
 distribution in the tails is independent
 of the mean. This is not really a very
 unusual result. A change in the mean, if
 it is to persist, must be rather small. In
 particular the shift is small relative to
 the largest values of a random variable
 from a long-tailed distribution.

 It is true that we have only considered

 changes in the mean that persist for
 fairly long periods of time, and this is a
 possible shortcoming of the preceding
 tests. It is also true, however, that any
 distribution, no matter how wild, can be
 represented as a mixture of normals if
 one is willing to postulate many short-
 lived periods of non-stationarity. One of
 the main sources of appeal of Mandel-
 brot's model, however, is that it is capa-

 ble of explaining both periods of turbu-

 24 The stocks chosen were American Can, Ameri-
 can Telephone and Telegraph, American TQbacco,
 Procter and Gamble, and Sears,
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 FIG. 4.-Normal probability graphs for American Telephone and Telegraph for different time periods.
 Horizontal axes of graphs show u, values of the daily changes in log price; vertical axes show fractiles of
 the c,d,f,
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 lence and periods of calm, without resort-
 ing to non-stationarity arguments.

 F. CONCLUSION

 The main result of this section is that
 the departures from normality in the
 distributions of the first differences of
 the logarithms of stock prices are in the
 direction predicted by the Mandelbrot
 hypothesis. Moreover, the two more
 complicated versions of the Gaussian
 model that were examined are incapable
 of explaining the departures. In the next
 section further tests will be used to de-
 cide whether the departures from nor-
 mality are sufficient to warrant rejection
 of the Gaussian hypothesis.

 IV. A CLOSER LOOK AT THE Em-
 PIRICAL DISTRIBUTIONS

 The first step in this section will be to
 test whether the distributions of price
 changes have the crucial property of sta-
 bility. If stability seems to hold, the
 problem will have been reduced to de-
 ciding whether the characteristic expo-
 nent a of the underlying stable Paretian
 process is less than 2, as assumed by the
 Mandelbrot hypothesis, or equal to 2 as
 assumed by the Gaussian hypothesis.

 A. STABILITY

 By definition, stable Paretian distribu-
 tions are stable or invariant under addi-
 tion. That is, except for origin and scale,
 sums of independent, identically distrib-
 uted, stable Paretian variables have the
 same distribution as the individual sum-
 mands. Hence, if successive daily changes
 in stock prices follow a stable Paretian
 distribution, changes across longer inter-
 vals such as a week or a month will follow
 stable Paretian distributions of exactly
 the same form.25 Most simply this means

 that the characteristic exponent a of the
 weekly and monthly distributions will be
 the same as the characteristic exponent
 of the distribution of the daily changes.

 Thus the most direct way to test sta-
 bility would be to estimate a for various
 differencing intervals to see if the same
 value holds in each case. Unfortunately,
 this direct approach is not feasible. We
 shall see later that in order to make rea-
 sonable estimates of a very large samples
 are required. Though the samples of
 daily price changes used in this report
 will probably be sufficiently large, the
 sampling period covered is not long
 enough to make reliable estimates of a
 for differencing intervals longer than a
 single day.

 The situation is not hopeless, however.
 We can develop an alternative, though
 cruder and more indirect, way of testing
 stability by making use of certain prop-
 erties of the parameter a. The charac-
 teristic exponent a of a stable Paretian
 distribution determines the length or
 height of the extreme tails of the distri-
 bution. Thus, if a has the same value for
 different distributions, the behavior of
 the extreme tails of the distributions
 should be at least roughly similar.

 A sensitive technique for examining
 the tails of distributions is normal proba-
 bility graphing. As explained in Section
 III, the normal probability plot of ranked
 values of a Gaussian variable will be a
 straight line. Since the Gaussian distribu-
 tion is stable, sums of Gaussian variables
 will also plot as a straight line on a
 normal probability graph. A stable Pare-
 tian distribution with a < 2 has longer
 tails than a Gaussian distribution, how-
 ever, and thus its normal probability
 graph will have the appearance of an
 elongated S, with the degree of curvature
 in the extreme tails larger the smaller
 the value of a. Sums of such variables

 21 Weekly and monthly changes in log price are,
 of course, just sums of daily changes.
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 should also plot as elongated S's with
 roughly the same degree of curvature as
 the graph of the individual summands.

 Thus if successive daily changes in log
 price for a given security follow a stable
 Paretian distribution with characteristic
 exponent a < 2, the normal probability
 graph for the changes should have the
 appearance of an elongated S. Since, by
 the property of stability, the value of a
 will be the same for distributions involv-
 ing differencing intervals longer than a
 single day, the normal probability graphs
 for these longer differencing intervals
 should also have the appearance of elon-
 gated S's with about the same degree of
 curvature in the extreme tails as the
 graph for the daily changes.

 A normal probability graph for the
 distribution of changes in log price across
 successive, non-overlapping periods of
 four trading days has been plotted for

 each stock. The graphs for four com-
 panies (American Tobacco, Eastman Ko-
 dak, International Nickel, and Wool-
 worth) are shown in Figure 5. In each
 case the graph for the four-day changes
 in Figure 5 seems, except for scale, almost
 indistinguishable from the corresponding
 graph for the daily changes in Figure 2.
 On this basis we conclude that the as-
 sumption of stability seems to be jus-
 tified. The problem in the remainder of
 Section IV will be to decide whether the
 underlying stable Paretian process has
 characteristic exponent less than 2, as
 proposed by the Mandelbrot hypothesis,
 or equal to 2, as proposed by the Gauss-
 ian hypothesis.

 Unfortunately, however, estimation of
 a is not a simple problem. In most cases
 there are no known explicit density func-
 tions for the stable Paretian distribu-
 tions, and thus there is virtually no sam-

 2.8-1 AM. TOBACCO e.05 CAST. KODAK

 t.4j of-i 1.4,

 o / .1 i

 -0J. 079 G0.026 0.027 0.080 0. 1 3' -0.060 -0.018 0.032 0.002 0.I13

 e.9 ' WUOOLUORT14 INT. MICKEL
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 0. 0.00.
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 - 091 -0.04 0.0,10 0.04 .1 -0.06,1 -0.06 -0.0,16 0.028a 0.0I -e 9 1 -.40 0.1 6O.it 0.11t -0

 FIG. 5.-Normal probability graphs for price changes across four trading days. Horizontal axes show u,
 values of the changes in log price; vertical axes show z, the values of the unit normal variable at different
 estimated fractile points.
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 pling theory available. Because of this
 the best that can be done is to make as
 many different estimates of a as possible
 in an attempt to bracket the true value.
 In the remainder of Section IV three
 different techniques will be used to esti-
 mate a. First, each technique will be
 examined in detail, and then a compari-
 son of the results will be made.

 B. ESTIMATING a FROM DOUBLE-LOG

 AND PROBABILITY GRAPHS

 If the distribution of the random vari-
 able u is stable Paretian with character-

 0.1 i

 0.01 a 1.0

 a1.5

 0.001 \ , 1

 0.0001

 a=2

 a=1.9 a =1.95
 O.000O 11f 1 I I 1 1 1 I I I - II

 I 10 100

 FIG. 6.-Double-log graphs for symmetric stable
 Paretian variables with different values of a. The
 various lines are double-log plots of the symmetric
 stable Paretian probability distributions with a = 0,
 'y = 1, f3 = 0 and various values of a. Horizontal
 axis shows log u; vertical axis shows log Pr(u > u)
 log Pr(u < -u). Taken from Mandelbrot [37, p.
 402].

 istic exponent 0 < a < 2, its tails follow
 an asymptotic form of the law of Pareto
 such that

 Pr(u> da) - (il/U1)-a,>0, and

 Pr (U <4) -_ >( 11/ U2)-a ) 14<0,

 where U1 and U2 are constants and the
 symbol --* means that the ratio26

 Pr (u > dl)
 ----- as Guscx.

 (U/ Ul)-

 Taking logarithms in expression (4) we
 have,

 log Pr(u > d) - a(log 4 - log U1),

 and log Pr (u < d) (5)

 -ca(log IUI - log U2).

 Expression (5) implies that if Pr(u >
 v) and Pr(u <ia) are plotted against I I
 on double-log paper, the two curves
 should become asymptotically straight
 and have slope that approaches -a as

 | I approaches infinity. Thus double-log
 graphing is one technique for estimating
 a. Unfortunately it is not very powerful
 if a is close to 2.27 If the distribution is
 normal (i.e., a = 2), Pr( u> ) de-
 creases faster than Iu1 increases, and the
 slope of the graph of log Pr (u > a)
 against log I I will approach - c. Thus
 the law of Pareto does not hold even
 asymptotically for the normal distribu-
 tion.

 When a is less than 2 the law of Pareto
 will hold, but on the double-log graph
 the true asymptotic slope will only be
 observed within a tail area containing
 total probability po(a) that is smaller the
 larger the value of a. This is demonstrat-
 ed in Figure 628 which shows plots of log

 26 Thus we see that the name stable Paretian for
 these distributions arises from the property of sta-
 bility and the asymptotically Paretian nature of the
 extreme tail areas.

 27 Cf. Mandelbrot [35].

 28 Taken from Mandelbrot [37], p. 402.
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 Pr(u > ii) against log I ul for values of
 a from one to two, and where the loca-
 tion, skewness, and scale parameters are
 given the values a = 0, f = 0, and y =
 1. When a is between 1.5 and 2, the abso-
 lute value of the slope in the middle of
 the double-log graph is greater than the
 true asymptotic slope, which is not
 reached until close to the bottom of the
 graph. For example, when a = 1.5, the
 asymptotic slope is closely attained only
 when Pr(u > i) < 0.015, so that Po(a)
 = 0.015; and when a = 1.8, po(a) =
 0.0011.

 If, on the average, the asymptotic
 slope can be observed only in a tail area

 containing total probability po(a), it will
 be necessary to have more than No(a) =
 1/po(a) observations before the slope of
 the graph will even begin to approach
 - a. When a is close to 2, extremely
 large samples are necessary before the
 asymptotic slope becomes observable.

 As an illustration Table 6 shows po(a)
 and No(a) for different values of a. The
 most important feature of the table is
 the rapid increase of No(a) with a. On
 the average, the double-log graph will
 begin to approach its asymptotic slope in
 samples of less than 100 only if a is 1.5
 or less. If the true value of a is 1.80,
 usually the graph will only begin to ap-
 proach its asymptotic slope for sample
 sizes greater than 909. For higher values
 of a the minimum sample sizes become
 almost unimaginable by most standards.

 Moreover, the expected number of ex-
 treme values which will exhibit the true
 asymptotic slope is Npo(a), where N is
 the size of the sample. If, for example,
 the true value of a is 1.8 and the sample
 contains 1,500 observations, on the av-
 erage the asymptotic slope will be ob-
 servable only for the largest one or two
 observations in each tail. Clearly, for
 large values of a double-log graphing

 puts much too much weight on the one
 or two largest observations to be a good

 estimation procedure. We shall see later
 that the values of a for the distributions
 of daily changes in log price of the stocks
 of the DJIA are definitely greater than
 1.5. Thus for our data double-log graph-

 ing is not a good technique for estimating
 a.

 The situation is not hopeless, however,
 the asymptotically Paretian nature of

 the extreme tails of stable Paretian dis-
 tributions can be used, in combination
 with probability graphing, to estimate the
 characteristic exponent a. Looking back

 TABLE 6

 po(a) No(a)

 1.00 .0.13000 8
 1.50 ..01500 67
 1.80 ..00110 909
 1.90 ..00050 2,000
 1.95 ..00030 3,333
 1.99 ..00006 16,667
 2.00 . 0 .............

 at Figure 6, we see that the theoretical
 double-log graph for the case a = 1.99
 breaks away from the double-log graph
 for a = 2 at about the point where
 Pr(u > u') = 0.001. Similarly, the dou-
 ble-log plot for a = 1.95 breaks away
 from the double-log plot for a = 1.99 at
 about the point where Pr(u > U') = 0.01.
 From the point of view of the normal-
 probability graphs this means that, if a
 is between 1.99 and 2, we should begin
 to observe curvature in the graphs some-
 where beyond the point where Pr(u > is)
 = 0.001. Similarly, if the true value of a
 is between 1.95 and 1.99, we should ob-
 serve that the normal-probability graph
 begins to show curvature somewhere be-
 tween the point where Pr(u > Ui) = 0.01
 and the point where Pr(u > A) = 0.001.

 This relationship between the theo-
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 retical double-log graphs for different
 values of a and the normal-probability
 graphs provides a natural procedure for
 estimating a. Continuing the discussion
 of the previous paragraph, we see in
 Figure 6 that the double-log plot for
 a = 1.90 breaks away from the plot for
 a = 1.95 at about the point where Pr(u
 > U) = 0.05. Thus, if a particular nor-
 mal-probability graph for some stock
 begins to show curvature somewhere be-
 tween the points where Pr(u > v') = 0.05
 and Pr(u > v) = 0.01, we would esti-
 mate that a is probably somewhere in
 the interval 1.90 < a < 1.95. Similarly,
 if the curvature in the normal-probabil-
 ity graphs begins to become evident
 somewhere between the points where
 Pr(u > v') = O.10 andPr(u > v') = 0.05,
 we shall say that a is probably some-
 where in the interval 1.80 < a < 1.90.
 If none of the normal-probability graph
 is even vaguely straight, we shall say
 that a is probably somewhere in the in-
 terval 1.50 < a < 1.80.

 Thus we have a technique for estimat-
 ing a which combines properties of the
 normal-probability graphs with proper-
 ties of the double-log graphs. The esti-
 mates produced by this procedure are
 found in column (1) of Table 9. Admit-
 tedly the procedure is completely sub-
 jective. In fact, the best we can do with
 it is to try to set bounds on the true value
 of a. The technique does not readily lend
 itself to point estimation. It is better
 than just the double-log graphs alone,
 however, since it takes into considera-
 tion more of the total tail area.

 C. ESTIMATING a BY RANGE ANALYSIS

 By definition, sums of independent,
 identically distributed, stable Paretian
 variables are stable Paretian with the
 same value of the characteristic exponent
 a as the distribution of the individual

 summands. The process of taking sums,
 however, does change the scale of the

 distribution. In fact it is shown in the
 appendix that the scale of the distribu-
 tion of sums is n/'a times the scale of the
 distribution of the individual summands,
 where n is the number of observations in
 each sum.

 This property can be used as the basis
 of a procedure for estimating a. Define
 an interfractile range as the difference
 between the values of a random variable
 at two different fractiles of its distribu-

 tion. The interfractile range, Rn, of the
 distribution of sums of n independent re-
 alizations of a stable Paretian variable as
 a function of the same interfractile range,
 R1, of the distribution of the individual
 summands is given by

 Rn = ni/a R1. (6)

 Solving for a, we have

 logn (7)
 log Rn - log R1l

 By taking different summing intervals
 (i.e., different values of n), and different
 interfractile ranges, (7) can be used to get
 many different estimates of a from the
 same set of data.

 Range analysis has one important
 drawback, however. If successive price
 changes in the sample are not independ-
 ent, this procedure will produce "biased"
 estimates of a. If there is positive serial
 dependence in the first differences, we
 should expect that the interfractile range
 of the distribution of sums will be more
 than ni/a times the fractile range of the
 distribution of the individual summands.
 On the other hand, if there is negative
 serial dependence in the first differences,
 we should expect that the interfractile
 range of the distribution of sums will be
 less than nl/a times that of the individual
 summands. Since the range of the sums
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 comes into the denominator of (7), these
 biases will work in the opposite direction
 in the estimation of the characteristic
 exponent a. Positive dependence will
 produce downward biased estimates of a,
 while the estimates will be upward biased
 in the case of negative dependence.29

 We shall see in Section V, however,
 that there is, in fact, no evidence of im-
 portant dependence in successive price
 changes, at least for the sampling period
 covered by our data. Thus it is probably
 safe to say that dependence will not have
 important effects on any estimates of a
 produced by the range analysis technique.

 Range analysis has been used to com-
 pute fifteen different estimates of a for
 each stock. Summing intervals of four,
 nine, and sixteen days were used; and for
 each summing interval separate esti-
 mates of a were made on the basis of
 interquartile, intersextile, interdecile, 5

 per cent, and 2 per cent ranges.80 The
 procedure can be clarified by adding a
 superscript to the formula for a as fol-

 lows:

 a log n/(log-Ri - log Ri),

 (8)
 n=4,9,16, and i=1 .. .,5,

 where n refers to the summing interval
 and i refers to a particular fractile range.
 For each value of n there are five differ-
 ent values of i, the different fractile
 ranges.

 Column (2) of Table 9 shows the aver-
 age values of a computed for each stock
 by the range analysis technique. The
 number for a given stock is the average
 of the fifteen different values of a com-
 puted for the stock.

 D. ESTIMATING a FROM THE

 SEQUENTIAL VARIANCE

 Although the population variance of a
 stable Paretian process with character-
 istic exponent a < 2 is infinite, the vari-
 ance computed from any sample will al-
 ways be finite. If the process is truly
 stable Paretian, however, as the sample
 size is increased, we should expect to see
 some upward growth or trend in the
 sample variance. In fact the appendix
 shows that, if ut is an independent stable
 Paretian variable generated in time se-
 ries, then the median of the distribution
 of the cumulative sample variance of Ut
 at time t1, as a function of the sample
 variance at time to, is given by

 S2 = S In, 1+2/a (9) 1 nok

 where ni is the number of observations
 in the sample at time ti, no is the number
 at time to, and S2 and SO are the cumu-
 lative sample variances. Solving equa-
 tion (9) for a we get,

 2 (log n1-log no)
 a = ... . .._.
 2 log Si- 2 log So+log n1-log no (10

 It is easy to see that estimates of a
 from equation (10) will depend largely
 on the difference between the values of

 the sample variances at times to and ti.
 If S2 is greater than SO, then the esti-
 mate of a will be less than 2. If the sam-

 29 It must be emphasized that the "bias" de-
 pends on the serial dependence shown by the sample
 and not the true dependence in the population. For
 example, if there is positive dependence in the sam-
 ple, the interfractile range of the sample sums will
 usually be more than nala times the interfractile
 range of the individual summands, even if there is no
 serial dependence in the population. In this case the
 nature of the sample dependence allows us to pin-
 point the direction of the sampling error of the esti-
 mate of a. On the other hand, when the sample de-
 pendence is indicative of true dependence in the
 population, the error in the estimate of a is a genuine
 bias rather than just sampling error. This distinc-
 tion, however, is irrelevant for present purposes.

 30 The ranges are defined as follows:
 Interquartile = 0.75 fractile -0.25 fractile;
 Intersextile = 0.83 fractile - 0.17 fractile;
 Interdecile = 0.90 fractile - 0.10 fractile;
 5 per cent = 0.95 fractile - 0.05 fractile;
 2 per cent = 0.98 fractile - 0.02 fractile.
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 ple variance has declined between to and

 ti, then the estimate of a will be more
 than 2.

 Now equation (10) can be used to ob-
 tain many estimates of a for each stock.
 This is done by varying the starting

 point n0 and the ending point ni of the
 interval of estimation. For this study
 starting points of from n0 = 200 to n0 =
 800 observations by jumps of 100 obser-
 vations were used. Similarly, for each
 value of no, a was computed for values
 of n1 = no + 100, ni = no + 200, no =

 no + 300, ... , and n1 = N, where N is
 the total number of price changes for the
 given security. Thus, if the sample of
 price changes for a stock contains 1,300
 observations, the sequential variance
 procedure of expression (10) would be
 used to compute fifty-six different esti-
 mates of a. For each stock the median
 of the different estimates of a produced
 by the sequential variance procedure
 was computed. These median values of
 a are shown in column (3) of Table 9.

 We must emphasize, however, that, of
 the three procedures for estimating a
 used in this report, the sequential-vari-
 ance technique is probably the weakest.
 Like probability graphing and range
 analysis, its theoretical sampling behav-
 ior is unknown, since explicit expressions

 for the density functions of stable Pare-
 tian distributions are unknown. In addi-
 tion, however, the sequential-variance
 procedure depends on the properties of
 sequential estimates of a sample param-
 eter. Sampling theory for sequential pa-
 rameter estimates is not well developed
 even for cases where an explicit expres-
 sion for the density function of the
 basic variable is known. Thus we may
 know that in general the sample sequen-
 tial variance grows proportionately to

 (n1/nO) -1+2/a but we do not know how

 large the sample must be before this
 growth tendency can be used to make
 meaningful estimates of a.

 The problems in estimating a by the
 sequential variance procedure are illus-
 trated in Table 7 which shows all the
 different estimates for American To-
 bacco. The estimates are quite erratic.
 They range from 0.46 to 18.54. Reading
 across any line in the table makes it clear
 that the estimates are highly sensitive to
 the ending point (n1) of the interval of
 estimation. Reading down any column,
 one sees that they are also extremely
 sensitive to the starting point (no).

 By way of contrast, Table 8 shows the
 different estimates of a for American
 Tobacco that were produced by the
 range analysis procedure. Unlike the se-

 TABLE 7

 ESTIMATES OF a FOR AMERICAN TOBACCO BY THE

 SEQUENTIAL-VARIANCE PROCEDURE

 nl

 300 400 500 600 700 800 900 1,000 1,100 1,200 1N283

 200 ...... 18.54 2.64 2.49 2.39 2.23 1.63 1.63 1.62 1.61 1.42 1.32
 300 1.19 1.47 1.58 1.57 1.18 1.22 1.24 1.25 1.12 1.05
 400 2.11 2.05 1.87 1.18 1.23 1.26 1.27 1.10 1.02
 500 1.99 1.74 0.97 1.06 1.11 1.14 0.98 0.91
 600 1.52 0.74 0.88 0.96 1.01 0.87 0.80
 700 0.46 0.69 0.83 0.91 0.77 0.72
 800 .. . 1.65 1.59 1.52 0.99 0.85
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 quential-variance estimates, the esti-
 mates in Table 8 are relatively stable.
 They range from 1.67 to 2.06. Moreover,
 the results for American Tobacco are
 quite representative. For each stock the
 estimates produced by the sequential-
 variance procedure show much greater
 dispersion than do the estimates pro-
 duced by range analysis. It seems safe to
 conclude, therefore, that range analysis is
 a much more precise estimation proce-
 dure than sequential-variance analysis.

 E. COMPARISON OF THE THREE PRO-

 CEDURES FOR ESTIMATING a

 Table 9 shows the estimates of a given
 by the three procedures discussed above.

 Column (1) shows the estimates pro-
 duced by the double-log-normal-proba-
 bility graphing procedure. Because of
 the subjective nature of this technique,

 TABLE 8

 ESTIMATES OF a FOR AMERICAN TOBACCO

 BY RANGE-ANALYSIS PROCEDURE

 SUMMING INTERVAL (DAYS)

 RANGE

 Four Nine Sixteen

 Interquartile .. 1.98 1.99 1.67
 Intersextile ...... 1.99 1.87 1. 70
 Interdecile ....... 1.80 2.02 1.87
 5 per cent........ 1.86 1.99 2.06
 2 per cent........ 1.80 1.89 1. 70

 TABLE 9

 COMPARISON OF ESTIMATES OF THE

 CHARACTERISTIC EXPONENT

 Double-Log- Range Sequential
 Stock Normal-Probability Analysis Variance

 Graphs
 (1) (2) (3)

 Allied Chemical .1.99-2.00 1.94 1.40
 Alcoa .1.95-1.99 1.80 2.05
 American Can .1.85-1.90 2.10 1.71
 A.T.&T .1.50-1.80 1.77 1.07
 American Tobacco 1.85-1.90 1.88 1.24
 Anaconda ..1.95-1.99 2.03 2.55
 Bethlehem Steel .1.90-1.95 1.89 1.85
 Chrysler .1.90-1.95 1.95 1.36
 Du Pont .1.90-1.95 1.88 1.65
 Eastman Kodak .1.90-1.95 1.92 1.76
 General Electric .1.80-1.90 1.95 1.57
 General Foods .1.85-1.90 1.87 1.86
 General Motors .1.95-1.99 2.05 1.44
 Goodyear .1.80-1.95 2.06 1.39
 International Harvester . 1.85-1.90 2.06 2.22
 International Nickel. 1.90-1.95 1.77 2.80
 International Paper .1.90-1.95 1.87 1.95
 Johns Manville .1.85-1.90 2.08 1.75
 Owens Illinois .1.85-1.90 1.95 2.06
 Procter & Gamble .1.80-1.90 1.84 1.70
 Sears .1.85-1.90 1.75 1.66
 Standard Oil (Calif.). 1.95-1.99 2.08 2.41
 Standard Oil (N.J.) .1.90-1.95 2.02 2.09
 Swift & Co .1.85-1.90 1.99 1.87
 Texaco .1.90-1.95 1.85 1.76
 Union Carbide .1.80-1.90 1.75 1.56
 United Aircraft .1.80-1.90 1.93 1.13
 U.S. Steel .1.95-1.99 1.96 1.78
 Westinghouse .1.95-1.99 2.10 1.35
 Woolworth .1.80-1.99 1.93 1.02

 Averages .1.87-1.94 1.93 1.73
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 the best that can be done is to estimate
 the interval within which the true value
 appears to fall. Column (2) shows the
 estimates of a based on range analysis,
 while column (3) shows the estimates
 based on the sequential variance proce-
 dure.

 The reasons why different techniques
 for estimating a are used, as well as the
 shortcomings of each technique, are fully
 discussed in preceding sections. At this
 point we merely summarize the previous
 discussions.

 First of all, since explicit expressions
 for the density functions of stable Pare-
 tian distributions are, except for certain
 very special cases, unknown sampling
 theory for the parameters of these dis-
 tributions is practically non-existent.
 Since it is not possible to make firm
 statements about the sampling error of
 any given estimator, the only alternative
 is to use many different estimators of the
 same parameter in an attempt at least
 to bracket the true value.

 In addition to the lack of sampling
 theory, each of the techniques for esti-
 mating a has additional shortcomings.
 For example, the procedure based on
 properties of the double-log and normal-
 probability graphs is entirely subjective.
 The range procedure, on the other hand,
 may be sensitive to whatever serial de-
 pendence is present in the sample data.
 Finally, the sequential-variance tech-
 nique produces estimates which are er-
 ratic and highly dependent on the time
 interval chosen for the estimation.

 It is not wholly implausible, however,
 that the errors and biases in the various
 estimators may, to a considerable extent,
 be offsetting. Each of the three proce-
 dures represents a radically different ap-
 proach to the estimation problem. There-
 fore there is good reason to expect the
 results they produce to be independent.

 At the very least, the three different
 estimating procedures should allow us to
 decide whether a is strictly less than 2,
 as proposed by the Mandelbrot hypothe-
 sis, or equal to 2, as proposed by the
 Gaussian hypothesis.

 Even a casual glance at Table 9 is
 sufficient to show that the estimates of
 a produced by the three different proce-
 dures are consistently less than 2. In
 combination with the results produced
 by the frequency distributions and the
 normal-probability graphs, this would
 seem to be conclusive evidence in favor
 of the Mandelbrot hypothesis.

 F. CONCLUSION

 In sum, the results of Sections III
 and IV seem to indicate that the daily
 changes in log price of stocks of large
 mature companies follow stable Paretian
 distributions with characteristic expo-
 nents close to 2, but nevertheless less
 than 2. In other words, the Mandelbrot
 hypothesis seems to fit the data better
 than the Gaussian hypothesis. In Section
 VI the implications of this conclusion
 will be examined from many points of
 view. In the next section we turn our
 attention to tests of the independence
 assumption of the random-walk model.

 V. TESTS FOR DEPENDENCE

 In this section, three main approaches
 to testing for dependence will be followed.
 The first will be a straightforward appli-
 cation of the usual serial correlation
 model; the second will make use of a
 new approach to the theory of runs;
 while the third will involve Alexander's
 [1], [2] well-known filter technique.

 Throughout this section we shall be
 interested in independence from two
 points of view, the statistician's and the
 investor's. From a statistical standpoint
 we are interested in determining whether
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 the departures from normality in the dis-
 tributions of price changes are due to
 patterns of dependence in successive
 changes. That is, we wish to determine
 whether dependence in successive price
 changes accounts for the long tails that
 have been observed in the empirical dis-
 tributions. From the investor's point of
 view, on the other hand, we are interest-
 ed in testing whether there are dependen-
 cies in the series that he can use to in-
 crease his expected profits.

 A. SERIAL CORRELATION

 1. THE MODEL

 The serial correlation coefficient (ra)
 provides a measure of the relationship
 between the value of a random variable
 in time t and its value r periods earlier.
 For example, for the variable ut, defined
 as the change in log price of a given se-
 curity from the end of day t - 1 to the
 end of day t, the serial correlation coeffi-
 cient for lag r is

 covariance(ut, Ut-T) (11)
 variance ( ut)

 If the distribution of Ut has finite vari-
 ance, then in very large samples the
 standard error of r7 will be given by

 o-(rT) -V1/(N -7), (12)

 where N is the sample size (cf. Kendall
 [25]).

 Previous sections have suggested, how-
 ever, that the distribution of ut is stable
 Paretian with characteristic exponent a
 less than 2. Thus the assumption of
 finite variance is probably not valid, and
 as a result equation (12) is not a precise
 measure of the standard error of r7, even
 for extremely large samples. Moreover,
 since the variance of Ut comes into the
 denominator of the expression for rT, it
 would seem questionable whether serial

 correlation analysis is an adequate tool
 for examining our data.

 Wise [49] has shown, however, that as
 long as the characteristic exponent a of
 the underlying stable Paretian process is
 greater than 1, the statistic r7 is a con-
 sistent and unbiased estimate of the true
 serial correlation in the population. That
 is, the sample estimate of rT is unbiased
 and converges in probability to its popu-
 lation value as the sample size approaches
 infinity."

 In order to shed some light on the con-

 vergence rate of r, when a < 2, the serial
 correlation coefficient for lag r = 1 has
 been computed sequentially for each
 stock on the basis of randomized first
 differences. The purpose of randomiza-
 tion was to insure that the expectation
 of the serial coefficient would be zero.
 The procedure was first to reorder ran-
 domly the array of first differences for
 each stock and then to compute the cu-
 mulative sample serial correlation coeffi-
 cient for samples of size n = 5, 10, . . ..
 N. Thus, except for five additional obser-
 vations, each sample contains the same
 values of u as the preceding one.

 Although the estimator r1 is consistent
 and unbiased, we should expect that,
 when a < 2, the variability of the sample
 serial correlation coefficients will be
 greater than if the distribution of ut had
 finite variance. The estimates, however,

 should converge to the true value, zero,

 as the sample size is increased. In order

 to judge the variability of the sample

 31 What Wise actually shows is that the least-
 squares estimate of b, in the regression equation,

 Ut = a + bT Ut-? + t X

 is consistent and unbiased as long as the character-
 istic exponent a of the distribution of it is greater
 than 1. Since the least squares estimate of b, is iden-
 tical to the estimate of rT, however, this is equivalent
 to proving that the estimate of r, is also consistent
 and unbiased.
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 coefficients two a. control limits were
 computed by means of the formula

 ri ? 2 or(ri) = 0 ? 2Vl//(n - 1),

 n=5, 10,..., N.

 Although the results must be judged
 subjectively, the sample serial correla-
 tion coefficients for the randomized first
 differences appear to break through their
 control limits only slightly more often
 than would be the case if the underlying
 distribution of the first differences had
 finite variance. From the standpoint of
 consistency the most important feature
 of the sample coefficients is that for every
 stock the serial correlation coefficient is
 very close to the true value, zero, for
 samples with more than, say, three hun-
 dred observations. In addition, the sam-
 ple coefficient stays close to zero there-
 after.

 For purposes of illustration graphs of
 the sequential randomized serial correla-
 tion coefficients for Goodyear and U.S.
 Steel are presented in Figure 7. The ordi-
 nates of the graphs show the values of
 the sequential. serial correlation coeffi-
 cents, while the abscissas show sequential
 sample size. The irregular lines on the
 graphs show the path of the coefficent
 while the smooth curves represent the
 two of control limits. The striking feature
 of both graphs is the quickness with
 which the sample coefficient settles down
 to its true value, zero, and stays close to
 the true value thereafter. On the basis

 of this evidence we conclude that, for
 large samples and for the values of a

 observed for our stocks, the sample serial
 correlation coefficient seems to be an

 effective tool in testing for serial inde-
 pendence.

 2. COEFFICIENTS FOR DAILY CHANGES

 Using the data as they were actually
 generated in time, the sample serial cor-

 relation coefficient for daily changes in
 log price has been computed for each
 stock for lag r of from 1 to 30 days. The
 results for r = 1, 2, . . ., 10 are shown
 in Table 10. Essentially the sample co-
 efficients in the table tell us whether any
 of the price changes for the last ten days
 are likely to be of much help in predicting
 tomorrow's change.

 All the sample serial correlation co-
 efficients in Table 10 are quite small in
 absolute value. The largest is only .123.
 Although eleven of the coefficients for
 lag r = 1 are more than twice their com-
 puted standard errors, this is not regard-
 ed as important in this case. The standard
 errors are computed according to equa-
 tion (12); and, as we saw earlier, this
 formula underestimates the true vari-
 ability of the coefficient when the under-
 lying variable is stable Paretian with
 characteristic exponent a < 2. In addi-
 tion, for our large samples the standard
 error of the serial correlation coefficient
 is very small. In most cases a coefficient
 as small as .06 is more than twice its
 standard error. "Dependence" of such a
 small order of magnitude is, from a
 practical point of view, probably unim-
 portant for both the statistician and the
 investor.

 3. COEFFICIENTS FOR FOUR-, NINE-, AND

 SIXTEEN-DAY CHANGES

 Although the sample serial correlation
 coefficients for the daily changes are
 all very small, it is possible that price
 changes across longer differencing inter-
 vals would show stronger evidence of de-
 pendence. To test this, serial correlation
 coefficients for lag r = 1, 2, . . ., 10 were
 computed for each stock for non-overlap-
 ping differencing intervals of four, nine,
 and sixteen days. The results for r = 1
 are shown in Table 11.32

 32 Of course, in taking longer differencing inter-
 vals the sample size is considerably reduced. The
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 Again, all the sample serial correlation
 coefficients are quite small. In general,
 the absolute size of the coefficients seems
 to increase with the differencing interval.

 This does not mean, however, that price
 changes over longer differencing intervals

 show more dependence, since we know
 that the variability of r is inversely re-

 lated to the sample size. In fact the

 average size of the coefficients relative to

 their standard errors decreases with the
 differencing interval. This is demonstrat-
 ed by the fact that for four-, nine-, and
 sixteen-day differencing intervals there
 are, respectively, five, two, and one co-
 efficients greater than twice their stand-
 ard errors in Table 11.

 An interesting feature of Tables 10 and
 11 is the pattern shown by the signs of
 the serial correlation coefficients for lag
 r = 1. In Table 10 twenty-three out of
 thirty of the first-order coefficients for
 the daily differences are positive, while
 twenty-one and twenty-four of the co-
 efficients for the four- and nine-day dif-

 ferences are negative in Table 11. For

 sample for the four-day changes is only one-fourth
 as large as the sample for the daily changes. Simi-
 larly, the samples for the nine- and sixteen-day
 changes are only one-ninth and one-sixteenth as
 large as the corresponding samples for the daily
 changes.

 TABLE 10

 DAILY SERIAL CORRELATION COEFFICIENTS FOR LAG T = 1, 2,.. ., 10

 LAG

 STOCK _ _ I _ . _ _

 1 2 3 4 5 6 7 8 9 10

 Allied Chemical.... .017 -.042 .007 -.001 .027 .004 -.017 -.026 -.017 -.007
 Alcoa ............. . 118* .038 -.014 .022 -.022 .009 .017 .007 -.001 -.033
 American Can ... . -.087*-.024 .034 -.065* -.017 -.006 .015 .025 -.047 -.040
 A.T.&T ... -.039 -.097* .000 .026 .005 -.005 .002 .027 -.014 .007
 American Tobacco.. . 111* -. 109* -.060* -.065* .007 -.010 .011 .046 .039 .041
 Anaconda ......... .067*-.061*-.047 -.002 .000 -.038 .009 .016 -.014 -.056
 Bethlemen Steel.... .013 -.065* .009 . 021 -.053 -.098* -.010 .004 -.002 -.021
 Chrysler. . . . .012 -.066* -.016 -.007 -.015 .009 .037 .056* -.044 .021
 Du Pont .......... .013 -.033 .060* .027 -.002 -.047 .020 .011 -.034 .001
 Eastman Kodak.... .025 .014 -.031 .005 -.022 .012 .007 .006 .008 .002
 General Electric.... .011 -.038 -.021 .031 -.001 .000 -.008 .014 -.002 .010
 General Foods . . . 061*-.003 .045 .002 -.015 -.052 -.006 -.014 -.024 -.017
 General Motors.... -.004 -.o56*-.037 -.008 -.038 -.006 .019 .006 -.016 .009
 Goodyear ......... -. 123* .017 -.044 .043 -.002 -.003 .035 .014 -.015 .007
 International Har-
 vester ........... -.017 -.029 -.031 .037 -.052 -.021 -.001 .003 -.046 -.016

 International Nickel .096* -.033 -.019 .020 .027 .059* -.038 -.008 - .016 .034
 InternationalPaper. .046 -.011 -.058* .053* .049 -.003 -.025 -.019 -.003 -.021
 Johns Manville .... . 006 -.038 -.027 -.023 -.029 -.080* .040 .018 -.037 .029
 Owens Illinois ...... -.021 -.084*-.047 .068* .086*-.040 .011 -.040 .067*-.043
 Procter & Gamble.. .099* -.009 -.008 .009 -.015 .022 .012 -.012 -.022 -.021
 Sears ............ .097* .026 .028 .025 .005 -.054 -.006 -.010 -.008 -.009
 Standard Oil (Calif.) .025 -.030 -.051*-.025 -.047 -.034 -.010 .072*-.049* -.035
 Standard Oil (N.J.). .008 -.116* .016 .014 -.047 -.018 -.022 -.026 -.073* .081*
 Swift & Co......... -.004 -.015 -.010 .012 .057* .012 -.043 .014 .012 .001
 Texaco ......... .094* -.049 -.024 - .018 -.017 -.009 .031 .032 -.013 .008
 Union Carbide ... . .107* -.012 .040 .046 -.036 -.034 .003 -.008 -.054 -.037
 United Aircraft .. . .014 -.033 -.022 -.047 -.067*-.053 .046 .037 .015 -.019
 U.S. Steel ......... . 040 -.074* .014 .011 -.012 -.021 .041 .037 -.021 -.044
 Westinghouse ...... -.027 -.022 -.036 -.003 .000 -.054* -.020 .013 -.014 .008
 Woolworth ........ .028 -.016 .015 .014 .007 -.039 -.013 .003 -.088* -.008

 * Coefficient is twice its computed standard error.
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 the sixteen-day differences the signs are
 about evenly split. Seventeen are posi-
 tive and thirteen are negative.

 The preponderance of positive signs in
 the coefficients for the daily changes is
 consistent with Kendall's [26] results for
 weekly changes in British industrial share
 prices. On the other hand, the results for
 the four- and nine-day differences are in
 agreement with those of Cootner [10] and
 Moore [41], both of whom found a pre-
 ponderance of negative signs in the serial
 correlation coefficients of weekly changes
 in log price of stocks on the New York
 Stock Exchange.

 Given that the absolute size of the

 serial correlation coefficients is always
 quite small, however, agreement in sign
 among the coefficients for the different
 securities is not necessarily evidence for
 consistent patterns of dependence. King

 [27] has shown that the price changes for
 different securities are related (although
 not all to the same extent) to the behav-
 ior of a "market" component common to
 all securities. For any given sampling
 period the serial correlation coefficient
 for a given security will be partly deter-
 mined by the serial behavior of this mar-
 ket component and partly by the serial
 behavior of factors peculiar to that se-
 curity and perhaps also to its industry.

 TABLE 11

 FIRST-ORDER SERIAL CORRELATION COEFFICIENTS FOR FOUR-,
 NINE-, AND SIXTEEN-DAY CHANGES

 DIFFERENCING INTERVAL (DAYS)

 STOCK

 Four Nine Sixteen

 Allied Chemical ........... .029 -.091 -.118
 Alcoa .................... .095 -.112 -.044
 American Can ............. -. 124* -.060 .031
 A.T. & T .................. -.010 -.009 -.003
 American Tobacco ......... -.175* .033 .007
 Anaconda ................. -.068 -.125 .202
 BethlehemSteel ........... -.122 -.148 .112
 Chrysler .................. .060 -.026 .040
 Du Pont ................. .069 -.043 -.055
 Eastman Kodak ........... -.006 -.053 -.023
 General Electric ........... .020 -.004 .000
 General Foods ............. -.005 -.140 -.098
 General Motors ........... -.128* .009 -.028
 Goodyear ................. .001 -.037 .033
 International Harvester .... -.068 -. 244* .116
 International Nickel ...... . .038 .124 .041
 International Paper ........ .060 -.004 -.010
 Johns Manville ............ -.068 -.002 .002
 Owens Illinois ............. -.006 .003 -.022
 Procter & Gamble ......... -.006 .098 .076
 Sears... . -.070 -.113 .041
 Standard Oil (Calif.). -. 143* -.046 .040
 Standard Oil (N.J.) ........ -.109 -.082 -.121
 Swift & Co ................ -.072 .118 -.197
 Texaco ................... -.053 -.047 - .178
 Union Carbide ............ .049 -.101 .124
 United Aircraft ............ .. 190* -. 192* -.040
 U.S. Steel ................. -.006 -.056 .236*
 Westinghouse ............. -.097 -.137 .067
 Woolworth ................ -.033 -.112 .040

 * Coefficient is twice its computed standard error.
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 Since the market component is common
 to all securities, however, its behavior
 during the sampling period may tend to
 produce a common sign for the serial cor-
 relation coefficients of all the different
 securities. Thus, although both the mar-
 ket component and the factors peculiar

 to individual firms and industries may be
 characterized by serial independence, the

 sample behavior of the market compo-
 nent during any given time period may

 be expected to produce agreement among
 the signs of the sample serial correlation
 coefficients for different securities. The
 fact that this agreement in sign is caused
 by pure sampling error in a random com-
 ponent common to all securities is evi-
 denced by the small absolute size of the
 sample coefficients. It is also evidenced
 by the fact that, although different
 studies have invariably found some sort
 of consistency in sign, the actual direc-
 tion of the "dependence" varies from
 study to study.33

 In sum, the evidence produced by the

 serial-correlation model seems to indi-
 cate that dependence in successive price
 changes is either extremely slight or
 completely non-existent. This conclusion

 should be regarded as tentative, however,
 until further results, to be provided by
 the runs tests of the next section, are

 examined.

 B. THE RUNS TESTS

 1. INTRODUCTION

 A run is defined as a sequence of price
 changes of the same sign. For example,
 a plus run of length i is a sequence of i
 consecutive positive price changes pre-
 ceded and followed by either negative or
 zero changes. For stock prices there are
 three different possible types of price
 changes and thus three different types of
 runs.

 The approach to runs-testing in this
 section will be somewhat novel. The dif-
 ferences between expected and actual
 numbers of runs will be analyzed in three
 different ways, first by totals, then by
 sign, and finally by length. First, for each
 stock the difference between the total
 actual number of runs, irrespective of
 sign, and the total expected number will
 be examined. Next, the total expected
 and actual numbers of plus, minus, and
 no-change runs will be studied. Finally,

 for runs of each sign the expected and
 actual numbers of runs of each length

 will be computed.

 2. TOTAL ACTUAL AND EXPECTED

 NUMBER OF RUNS

 If it is assumed that the sample pro-

 portions of positive, negative, and zero
 price changes are good estimates of the

 population proportions, then under the

 33 The model, in somewhat oversimplified form,
 is as follows. The change in log price of stock j
 during day t is a linear function of the change in a
 market component, It, and a random error term,
 Iti, which expresses the factors peculiar to the indi-
 vidual security. The form of the function is uti =
 bjtI + Iti, where it is assumed that the It and ttj
 are both serially independent and that (tj is inde-
 pendent of current and past values of It. If we
 further assume, solely for simplicity, that E(~tt) =
 E(It) = 0 for all t and j, we have

 cov (uti, ut-, j) = E[bITt + ttj)(bjIt-T

 + it- j)] = cov (It, It-)

 + bj cov (It, {t, j)

 + bj COV (It-r, {tj) + COV (ttj, It_, j) .

 Although the expected values of the covariances on
 the right of the equality are all zero, their sample
 values for any given time period will not usually be
 equal to zero. Since cov (It, It-,) will be the same
 for all j, it will tend to make the signs of cov (u t,
 U t-r, i) the same for different j. Essentially we are
 saying that the serial correlation coefficients for
 different securities for given lag and time period
 are not independent of each other. Thus we should

 not be surprised when we find a preponderance of
 signs in one direction or the other.
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 hypothesis of independence the total ex-
 pected number of runs of all signs for a
 stock can be computed as

 3

 m = [N(N+ 1 1~ )-En2. N, (13)

 where N is the total number of price
 changes, and the ni are the numbers of
 price changes of each sign. The standard
 error of m is

 and for large N the sampling distribution
 of m is approximately normal.34

 Table 12 shows the total expected and
 actual numbers of runs for each stock for

 34 Cf. Wallis and Roberts [481, pp. 569-72. It
 should be noted that the asymptotic properties of
 the sampling distribution of m do not depend on the
 assumption of finite variance for the distribution of
 price changes. We saw previously that this is not
 true for the sampling distribution of the serial cor-
 relation coefficient. In particular, except for the
 properties of consistency and unbiasedness, we

 | an2. a n2.+ N( N+ l) J-2 N2En3-N3 A
 2N~n~-N3) (14)

 N2(N-1)

 TABLE 12

 TOTAL ACTUAL AND EXPECTED NUMBERS OF RUNS FOR ONE-, FOUR-,
 NINE-, AND SIXTEEN-DAY DIFFERENCING INTERVALS

 DAILY FOUR-DAY NINE-DAY SIXTEEN-DAY

 S T O CK - _ _ _ _ _ _ _ _ - _ _ _ _ . _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _

 Actual Expected Actual Expected Actual Expected Actual Expected

 Allied Chemical ........... 683 713.4 160 162.1 71 71.3 39 38.6
 Alcoa ................... 601 670.7 151 153.7 61 66.9 41 39.0
 American Can ............ 730 755.5 169 172.4 71 73.2 48 43.9
 A.T.&T .................. 657 688.4 165 155.9 66 70.3 34 37.1
 American Tobacco . 700 747.4 178 172.5 69 72.9 41 40.6
 Anaconda ................ 635 680.1 166 160.4 68 66.0 36 37.8
 Bethlehem Steel ........... 709 719.7 163 159.3 80 71.8 41 42.2
 Chrysler.927 932.1 223 221.6 100 96.9 54 53.5
 Du Pont .................. 672 694.7 160 161.9 78 71.8 43 39.4
 Eastman Kodak ........... 678 679.0 154 160.1 70 70.1 43 40.3
 General Electric ........... 918 956.3 225 224.7 101 96.9 51 51.8
 General Foods ............ 799 825.1 185 191.4 81 75.8 43 40.5
 General Motors ........... 832 868.3 202 205.2 83 85.8 44 46.8
 Goodyear ................ 681 672.0 151 157.6 60 65.2 36 36.3
 International Harvester ... 720 713.2 159 164.2 84 72.6 40 37.8
 International Nickel ....... 704 712.6 163 164.0 68 70.5 34 37.6
 International Paper....... . 762 826.0 190 193.9 80 82.8 51 46.9
 Johns Manville ........... 685 699.1 173 160.0 64 69.4 39 40.4
 Owens Illinois ............. 713 743.3 171 168.6 69 73.3 36 39.2
 Procter & Gamble ......... 826 858.9 180 190.6 66 81.2 40 42.9
 Sears ................... 700 748.1 167 172.8 66 70.6 40 34.8
 Standard Oil (Calif.) ....... 972 979.0 237 228.4 97 98.6 59 54.3
 Standard Oil (N.J.) ........ 688 704.0 159 159.2 69 68.7 29 37.0
 Swift & Co ................ 878 877.6 209 197.2 85 83.8 50 47.8
 Texaco ................... 600 654.2 143 155.2 57 63.4 29 35.6
 Union Carbide ............ 595 620.9 142 150.5 67 66.7 36 35.1
 United Aircraft ........... 661 699.3 172 161.4 77 68.2 45 39.5
 U.S. Steel ................ 651 662.0 162 158.3 65 70.3 37 41.2
 Westinghouse ............. 829 825.5 198 193.3 87 84.4 41 45.8
 Woolworth ............... 847 868.4 193 198.9 78 80.9 48 47.7

 Averages ............. 735.1 759.8 175.7 175.8 74.6 75.3 41.6 41.7
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 one-, four-, nine-, and sixteen-day price
 changes. For the daily changes the actual
 number of runs is less than the expected
 number in twenty-six out of thirty cases.
 This agrees with the results produced by
 the serial correlation coefficients. In Ta-
 ble 10, twenty-three out of thirty of the
 first-order serial correlation coefficients
 are positive. For the four- and nine-day
 differences, however, the results of the
 runs tests do not lend support to the
 results produced by the serial correlation
 coefficients. In Table 11 twenty-one and
 twenty-four of the serial correlation co-
 efficients for four- and nine-day changes
 are negative. To be consistent with nega-
 tive dependence, the actual numbers of
 runs in Table 12 should be greater than
 the expected numbers for these differ-
 encing intervals. In fact, for the four-day
 changes the actual number of runs is
 greater than the expected number for
 only thirteen of the thirty stocks, and
 for the nine-day changes the actual num-
 ber is greater than the expected number
 in only twelve cases. For the sixteen-day
 differences there is no evidence for de-
 pendence of any form in either the serial
 correlation coefficients or the runs tests.

 For most purposes, however, the abso-
 lute amount of dependence in the price
 changes is more important than whether
 the dependence is positive or negative.
 The amount of dependence implied by
 the runs tests can be depicted by the
 size of the differences between the total

 actual numbers of runs and the total ex-

 pected numbers. In Table 13 these differ-
 ences are standardized in two ways.

 For large samples the distribution of

 the total number of runs is approximate-
 ly normal with mean m and standard

 error -m, as defined by equations (13) and
 (14). Thus the difference between the

 actual number of runs, R, and the ex-
 pected number can be expressed by
 means of the usual standardized variable,

 (R+) -m (15)
 am

 where the 2 in the numerator is a discon-
 tinuity adjustment. For large samples K
 will be approximately normal with mean
 0 and variance 1. The columns labeled
 K in Table 13 show the standardized
 variable for the four differencing inter-
 vals. In addition, the columns labeled
 (R - m)/m show the differences between
 the actual and expected numbers of runs
 as proportions of the expected numbers.

 For the daily price changes the values

 of K show that for eight stocks the actual
 number of runs is more than two stand-
 ard errors less than the expected number.
 Caution is required in drawing conclu-
 sions from this result, however. The ex-
 pected number of runs increases about
 proportionately with the sample size,
 while its standard error increases propor-
 tionately with the square root of the
 sample size. Thus a constant but small
 percentage difference between the expect-
 ed and actual number of runs will pro-
 duce higher and higher values of the
 standardized variable as the sample size
 is increased. For example, for General
 Foods the actual number of runs is about
 3 per cent less than the expected number
 for both the daily and the four-day
 changes. The standardized variable, how-
 ever, goes from -1.46 for the daily
 changes to -0.66 for the four-day
 changes.

 In general, the percentage differences
 between the actual and expected num-
 bers of runs are quite small, and this is

 know very little about the distribution of the serial
 correlation coefficient when the price changes follow
 a stable Paretian distribution with characteristic
 exponent a < 2. From this standpoint at least,
 runs-testing is, for our purposes, a better way of
 testing independence than serial correlation analysis.
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 probably the more relevant measure of
 dependence.

 3. ACTUAL AND EXPECTED NUMBERS

 OF RUNS OF EACH SIGN

 If the signs of the price changes are
 generated by an independent Bernoulli
 process with probabilities P(+), P(-),
 and P(O) for the three types of changes,
 for large samples the expected number
 of plus runs of length i in a sample of
 N changes35 will be approximately

 NP(+)ifl - P(+)]2. (16)

 The expected number of plus runs of all
 lengths will be

 ?SNP( + )i[1-P( +) ]2 ( 17)
 i==1

 =NP( +) [I 1-P( +) ]

 Similarly the expected numbers of minus
 and no-change runs of all lengths will be

 NP(-)[1 - P(-)] and

 NP(O)[1-P(O)].

 For a given stock, the sum of the ex-
 pected numbers of plus, minus, and no-
 change runs will be equal to the total
 expected number of runs of all signs, as
 defined in the previous section. Thus the

 35 Cf. Hald [211, pp. 342-53.

 TABLE 13

 RUNS ANALYSIS: STANDARDIZED VARIABLES AND PERCENTAGE DIFFERENCES

 DAILY FOUR-DAY NINE-DAY SIXTEEN-DAY

 S T O CK.- _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ _ _ _

 K (R-m)/m K (R-m)/rl K (R-m)/m K (R-m)/m

 Allied Chemical ........... -1.82 -0.043 -0.19 -0.013 0.04 -0.004 0.21 0.011

 Alcoa .... ............. -4.23 - .104 - .26 - .018 -0.95 - .089 0.60 .052
 American Can ............ -1.54 - .034 - .35 - .020 -0.30 - .030 1.16 .090
 A.T.&T .................. -1.88 - .046 1.14 .058 -0.71 - .060 -0.65 - .083
 American Tobacco ......... -2.80 - .063 .70 .032 -0.63 - .054 0.22 .010
 Anaconda .......... I ...... -2.75 - .066 .73 .035 0.44 .030 -0.30 - .047
 Bethlehem Steel ........... -0.63 - .015 .50 .023 1.57 .114 -0.16 - .028
 Chrysler ................. -0.24 - .006 .19 .006 0.54 .032 0.20 .010
 Du Pont ................. -1.32 - .033 - .16 - .012 1.16 .086 0.93 .090
 Eastman Kodak ........... -0.03 - .002 - .64 - .038 0.06 - .002 0.77 .066
 General Electric ........ . -1.94 - .040 .08 .001 0.68 .042 -0.06 - .015
 General Foods ............ -1.46 - .032 - .66 - .033 0.99 .068 0.71 .061
 General Motors ........... -2.02 - .042 - .30 - .016 -0.37 - .032 -0.50 - .061
 Goodyear ................ 0.59 .013 - .75 - .042 -0.83 - .080 0.05 - .008
 International Harvester .... 0.45 .010 - .58 - .032 2.16 .156 0.67 .059
 International Nickel ....... -0.49 - .012 - .06 - .006 -0.35 - .036 -0.75 - .096
 International Paper....... . -3.53 - .077 - .38 - .020 -0.38 - .034 0.98 .087
 Johns Manville ........... -0.83 - .020 1.62 .081 -0.89 - .078 -0.22 - .035
 Owens Illinois ............. -1.81 - .041 .34 .014 -0.68 - .059 -0.65 - .082
 Procter & Gamble ......... -1.82 - .038 -1.13 - .056 -2.51 - .188 -0.59 - .068
 Sears ................... -2.94 - .064 - .66 - .034 -0.79 - .066 1.69 .149
 Standard Oil (Calif.) ....... -0.33 - .007 .92 .038 -0.16 - .016 1.03 .086
 Standard Oil (N.J.) ........ -0.98 - .023 .03 - .001 0.15 .005 -1.78 - .216
 Swift &Co .0.05 .000 1.34 .060 0.28 .015 0.58 .045
 Texaco ................... -3.33 - .083 -1.43 - .078 -1.08 - .101 -1.51 - .186
 Union Carbide ............ -1.60 - .042 - .99 - .056 0.16 .005 0.33 .024
 United Aircraft ........... -2.32 - .055 1.33 .066 1.63 .128 1.42 .140
 U.S. Steel ................ -0.63 - .017 .49 .023 -0.85 - .075 -0.90 - .102
 Westinghouse ............. 0.22 .004 .56 .024 0.51 .031 -0.92 - .105
 Woolworth ............... -1.18 -0.025 -0.59 -0.030 -0.38 -0.035 0.17 0.006

 Averages ............. -1.44 -0.033 0.03 -0.001 -0.05 -0.010 0.09 0.005
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 above expressions give the breakdown of
 the total expected number of runs into
 the expected numbers of runs of each
 sign.

 For present purposes, however, it is
 not desirable to compute the breakdown
 by sign of the total expected number of
 runs. This would blur the results of this
 section, since we know that for some dif-
 ferencing intervals there are consistent
 discrepancies between the total actual
 numbers of runs of all signs and the total
 expected numbers. For example, for
 twenty-six out of thirty stocks the total
 expected number of runs of all signs for
 the daily differences is greater than the
 total actual number. If the total expected
 number of runs is used to compute the
 expected numbers of runs of each sign,
 the expected numbers by sign will tend
 to be greater than the actual numbers.
 And this will be the case even if the
 breakdown of the total actual number of
 runs into the actual number of runs of
 each sign is proportional to the expected
 breakdown.

 This is the situation we want to avoid
 in this section. What we will examine
 here are discrepancies between the ex-
 pected breakdown by sign of the total
 actual number of runs and the actual
 breakdown. To do this we must now
 define a method of computing the ex-
 pected breakdown by sign of the total
 actual number of runs.

 The probability of -a plus run can be
 expressed as the ratio of the expected
 number of plus runs in a sample of size
 N to the total expected number of runs
 of all signs, or as

 P(+ run) = NP(+)[1 - P)(+)]I/m. (19)

 Similarly, the probabilities of minus and
 no-change runs can be expressed as

 P(- run) (20)
 -NP(-)[1-P(-)I/m, and

 P(O run) = NP(O)[1 - P(O)]/m. (21)

 The expected breakdown by sign of
 the total actual number of runs (R) is
 then given by

 = R[P(+ run)],

 R(-) = R[P(- run)], and (22)

 R(O)= R[P(O run)],

 where R(+), R(-), and R(O) are the
 expected numbers of plus, minus, and no-
 change runs. These formulas have been
 used to compute the expected numbers
 of runs of each sign for each stock for
 differencing intervals of one, four, nine,
 and sixteen days. The actual numbers of
 runs and the differences between the ac-
 tual and expected numbers have also
 been computed. The results for the daily
 changes are shown in Table 14. The re-
 sults for the four-, nine-, and sixteen-day
 changes are similar, and so they are
 omitted.

 The differences between the actual and
 expected numbers of runs are all very
 small. In addition there seem to be no
 important patterns in the signs of the
 differences. We conclude, therefore, that
 the actual breakdown of runs by sign
 conforms very closely to the breakdown
 that would be expected if the signs were
 generated by an independent Bernoulli
 process.

 4. DISTRIBUTION OF RUNS BY LENGTH

 In this section the expected and actual
 distributions of runs by length will be
 examined. As in the previous section, an
 effort will be made to separate the analy-
 sis from the results of runs tests discussed
 previously. To accomplish this, the dis-
 crepancies between the total actual and
 expected numbers of runs and those be-
 tween the actual and expected numbers
 of runs of each sign will be taken as given.
 Emphasis will be placed on the expected
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 distributions by length of the total actual
 number of runs of each sign.

 As indicated earlier, the expected num-
 ber of plus runs of length i in a sample of
 N price changes is NP(+)'[1 - p(+)]2
 and the total expected number of plus
 runs is NP(+)[1 - P(+)]. Out of the
 total expected number of plus runs, the
 expected proportion of plus runs of
 length i is

 NP(+) i[ I - P(+)]2 NP(+) ( 23)
 X [1- PMI = P(+)i--[l-P(+)].

 This proportion is equivalent to the
 conditional probability of a plus run of
 length i, given that a plus run has been
 observed. The sum of the conditional
 probabilities for plus runs of all lengths

 is one. The analogous conditional proba-

 bilities for minus and no-change runs are

 P(_)i-1 _- P(-)] and (24)
 P(O)i- [l-P(O)] .

 These probabilities can be used to

 compute the expected distributions by
 length of the total actual number of runs
 of each sign. The formulas for the ex-

 pected numbers of plus, minus, and no-
 change runs of length i, i = 1,..., co,
 are

 = R(+) P(+)i-'[l -P(+)]

 R()= R(-) p(_)i-l( 5 R(-) ~~~(25)
 X [R( - P(-)]

 .Ri(O) =R(O) P(O)i-'[l -P(O)],

 TABLE 14

 RUNS ANALYSIS BY SIGN (DAILY CHANGES)

 POSITIVE NEGATIVE No CHANGE

 STOCK
 Ex- Actual- Ex- Actual- Ex- Actual-

 pected Expected pected Expected pected Expected

 Allied Chemical ......... 286 290.1 - 4.1 294 290.7 3.3 103 102.2 0.8
 Alcoa ................. 265 264.4 0.6 262 266.5 - 4.5 74 70.1 3.9
 American Can .......... 289 290.2 - 1.2 285 284.6 0.4 156 155.2 0.8
 A.T.&T ................ 290 291.2 - 1.2 285 285.3 - 0.3 82 80.5 1.5
 American Tobacco ...... 296 300.2 - 4.2 295 294.0 1.0 109 105.8 3.2
 Anaconda .............. 271 272.9 - 1.9 276 278.8 - 2.8 88 83.3 4.7
 Bethlehem Steel ........ 282 286.4 - 4.4 300 294.6 5.4 127 128.0 -1.0
 Chrysler ............... 417 414.9 2.1 421 421.1 - 0.1 89 91.0 -2.0
 Du Pont ............... 293 300.3 - 7.3 305 299.2 5.8 74 72.5 1.5
 Eastman Kodak ........ 306 308.6 - 2.6 312 308.7 3.3 60 60.7 -0.7
 General Electric ........ 404 404.5 - 0.5 401 404.7 - 3.7 113 108.8 4.2
 General Foods .......... 346 340.8 5.2 320 331.3 -11.3 133 126.9 6.1
 General Motors ...... . 340 342.7 - 2.7 339 340.3 - 1.3 153 149.0 4.0
 Goodyear .............. 294 291.9 2.1 292 293.0 - 1.0 95 96.1 -1.1
 International Harvester. . 303 300.1 2.9 301 298.8 2.2 116 121.1 -5.1
 International Nickel ... . 312 307.0 5.0 296 301.9 - 5.9 96 95.1 0.9
 International Paper ... . 322 330.2 - 8.2 338 333.2 4.8 102 98.6 3.4
 Johns Manville ......... 293 292.6 0.4 296 293.5 2.5 96 98.9 -2.9
 Owens Illinois .......... 297 293.7 3.3 295 291.2 3.8 121 128.1 -7.1
 Procter & Gamble . 343 346.4 - 3.4 342 340.3 1.7 141 139.3 1.7
 Sears ........ 291 289.3 1.7 265 271.3 - 6.3 144 139.4 4.6
 Standard Oil(Calif.) 406 417.9 -11.9 427 416.6 10.4 139 137.5 1.5
 Standard Oil (N.J.) ...... 272 277.3 - 5.3 281 277.9 3.1 135 132.8 2.2
 Swift & Co ............. 354 354.3 - 0.3 355 356.9 - 1.9 169 166.8 2.2
 Texaco ................ 266 265.6 0.4 258 263.6 - 5.6 76 70.8 5.2
 Union Carbide ....... . 266 268.1 - 2.1 265 265.6 - 0.6 64 61.3 2.7
 United Aircraft ......... 281 280.4 0.6 282 282.2 - 0.2 98 98.4 -0.4
 U.S. Steel .............. 292 293.5 - 1.5 296 295.2 0.8 63 62.3 0.7
 Westinghouse .......... 359 361.3 - 2.3 364 362.1 1.9 106 105.6 0.4
 Woolworth ............. 349 348.7 0.3 350 345.9 4.1 148 152.4 -4.4
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 where Ri(+), Ri(-), and ki(O) are the
 expected numbers of plus, minus, and
 no-change runs of length i, while R(+),
 R(-), and R(O) are the total actual num-
 bers of plus, minus, and no-change runs.
 Tables showing the expected and actual
 distributions of runs by length have been
 computed for each stock for differencing
 intervals of one, four, nine, and sixteen
 days. The tables for the daily changes of
 three randomly chosen securities are
 found together in Table 15. The tables
 show, for runs of each sign, the proba-
 bility of a run of each length and the
 expected and actual numbers of runs of
 each length. The question answered by
 the tables is the following: Given the
 total actual number of runs of each sign,
 how would we expect the totals to be dis-
 tributed among runs of different lengths
 and what is the actual distribution?

 For all the stocks the expected and
 actual distributions of runs by length
 turn out to be extremely similar. Impres-
 sive is the fact that there are very few
 long runs, that is, runs of length longer
 than seven or eight. There seems to be
 no tendency for the number of long runs
 to be higher than expected under the
 hypothesis of independence.

 5. SUMMARY

 There is little evidence, either from the
 serial correlations or from the various
 runs tests, of any large degree of depend-
 ence in the daily, four-day, nine-day, and
 sixteen-day price changes. As far as these
 tests are concerned, it would seem that
 any dependence that exists in these series
 is not strong enough to be used either to
 increase the expected profits of the trader
 or to account for the departures from
 normality that have been observed in the
 empirical distribution of price changes.
 That is, as far as these tests are con-
 cerned, there is no evidence of important

 dependence from either an investment or
 a statistical point of view.

 We must emphasize, however, that al-
 though serial correlations and runs tests
 are the common tools for testing depend-
 ence, there are situations in which they
 do not provide an adequate test of either
 practical or statistical dependence. For
 example, from a practical point of view
 the chartist would not regard either type
 of analysis as an adequate test of whether
 the past history of the series can be used
 to increase the investor's expected profits.
 The simple linear relationships that un-
 derlie the serial correlation model are
 much too unsophisticated to pick up the
 complicated "patterns" that the chartist
 sees in stock prices. Similarly, the runs
 tests are much too rigid in their approach
 to determining the duration of upward
 and downward movements in prices. In
 particular, a run is terminated whenever
 there is a change in sign in the sequence
 of price changes, regardless of the size of
 the price change that causes the change
 in sign. A chartist would like to have a
 more sophisticated method for identify-
 ing movements-a method which does
 not always predict the termination of
 the movement simply because the price
 level has temporarily changed direction.
 One such method, Alexander's filter tech-
 nique, will be examined in the next sec-
 tion.

 On the other hand, there are also pos-
 sible shortcomings to the serial correla-
 tion and runs tests from a statistical
 point of view. For example, both of these
 models only test for dependence which is
 present all through the data. It is pos-
 sible, however, that price changes are
 dependent only in special conditions. For
 example, although small changes may be
 independent, large changes may tend to
 be followed consistently by large changes
 of the same sign, or perhaps by large
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 changes of the opposite sign. One version
 of this hypothesis will also be tested later.

 C. ALEXANDER S FILTER TECHNIQUE

 The tests of independence discussed
 thus far can be classified as primarily
 statistical. That is, they involved com-
 putation of sample estimates of certain
 statistics and then comparison of the re-
 sults with what would be expected under
 the assumption of independence of suc-
 cessive price changes. Since the sample
 estimates conformed closely to the values
 that would be expected by an independ-
 ent model, we concluded that the inde-
 pendence assumption of the random-walk
 model was upheld by the data. From
 this we then inferred that there are prob-
 ably no mechanical trading rules based
 solely on properties of past histories of
 price changes that can be used to make
 the expected profits of the trader greater
 than they would be under a simple buy-
 and-hold rule. We stress, however, that
 until now this is just an inference; the
 actual profitability of mechanical trading
 rules has not yet been directly tested. In
 this section one such trading rule, Alex-
 ander's filter technique [1], [2], will be
 discussed.

 An x per cent filter is defined as fol-
 lows. If the daily closing price of a par-
 ticular security moves up at least x per
 cent, buy and hold the security until its
 price moves down at least x per cent
 from a subsequent high, at which time
 simultaneously sell and go short. The
 short position is maintained until the
 daily closing price rises at least x per
 cent above a subsequent low, at which
 time one should simultaneously cover
 and buy. Moves less than x per cent in
 either direction are ignored.

 In his earlier article [1, Table 7] Alex-
 ander reported tests of the filter tech-
 nique for filters ranging in size from 5

 per cent to 50 per cent. The tests covered
 different time periods from 1897 to 1959
 and involved closing "prices" for two in-
 dexes, the Dow-Jones Industrials from
 1897 to 1929 and Standard and Poor's
 Industrials from 1929 to 1959. Alexan-
 der's results indicated that, in general,
 filters of all different sizes and for all
 the different time periods yield substan-
 tial profits-indeed, profits significantly
 greater than those earned by a simple
 buy-and-hold policy. This led him to
 conclude that the independence assump-
 tion of the random-walk model was not
 upheld by his data.

 Mandelbrot [37], however, discovered
 a flaw in Alexander's computations which
 led to serious overstatement of the profit-
 ability of the filters. Alexander assumed
 that his hypothetical trader could always
 buy at a price exactly equal to the low
 plus x per cent and sell at a price exactly
 equal to the high minus x per cent. There
 is, of course, no assurance that such
 prices ever existed. In fact, since the
 filter rule is defined in terms of a trough
 plus at least x per cent or a peak minus
 at least x per cent, the purchase price
 will usually be something higher than the
 low plus x per cent, while the sale price
 will usually be below the high minus x
 per cent.

 In a later paper [2, Table 1], however,
 Alexander derived a bias factor and used
 it to correct his earlier work. With the
 corrections for bias it turned out that the
 filters only rarely compared favorably
 with buy-and-hold, even though the
 higher broker's commissions incurred
 under the filter rule were ignored. It
 would seem, then, that at least for the
 purposes of the individual investor Alex-
 ander's filter results tend to support the
 independence assumption of the random
 walk model.

 In the later paper [2, Tables 8, 9, 10,
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 TABLE 15-EXPECTED AND ACTUAL DISTRIBUTIONS OF RUNS BY LENGTH

 PLUS RUNS MINUS RUNS NO-CHANGE RUNS

 LENGTH

 . xeExpe cted Actual xpce cul .. Expected Actual Probability E Actual Probability Expected Actual Probability E Actual
 No. No. No. No. No. No.

 American Tobacco

 1............ 0.52221 154.58 133 0.57521 169.69 164 0.90257 98.38 94
 2 . 24951 73.85 80 .24434 72.08 66 .08794 9.58 14
 3 . 11921 35.29 40 .10379 30.62 34 .00857 0.93 1
 4 .0..... .. o5696 16.86 25 .04409 13.01 19 .00083 0.09 0
 5 . 02721 8.06 9 .01873 5.52 3 .00008 0.01 0
 6 . 01300 3.85 8 .00796 2.35 7 .00001 0.00 0
 7 ...00621 .00621 1.84 1 .00338 1.00 2 .00000 0.00 0
 8 . 00297 0.88 0 .00144 0.42 0 .00000 0.00 0
 9 . 00142 0.42 0 .00061 0.18 0 .00000 0.00 0
 10 . 00068 0.20 0 .00026 0.08 0 .00000 0.00 0
 11 . 00032 0.10 0 .00011 0.03 0 .00000 0.00 0
 12 . 00015 0.05 0 .00005 0.01 0 .00000 0.00 0
 13 . 00007 0.02 0 .00002 0.01 0 .00000 0.00 0
 14 . 00004 0.01 0 .00001 0.00 0 .00000 0.00 0
 15 ........... 0.00003 0.01 0 0.00001 0.00 0 0.00000 0.00 0

 Totals .... . ......... 296.00 296 ......... 295.00 295 ....... 109.00 109

 Bethlehem Steel

 1.0.... .. 0.59000 166.38 159 0.53333 160.00 155 0.87667 111.34 107
 2 .. . 24190 68.22 73 .24889 74.67 79 .10812 13.73 19
 3 .. . 09918 27.97 29 .11615 34.84 37 .01334 1.69 1
 4 ...... . .04066 11.47 11 .05420 16.26 16 .00164 0.21 0
 5 ......... . 01667 4.70 6 .02529 7.59 9 .00020 0.03 0
 6 ......... . 00684 1.93 2 .01180 3.54 2 .00003 0.00 0
 7 ......... . 00280 0.79 2 .00551 1.65 1 .00000 0.00 0
 8 ......... . 00115 0.32 0 .00257 0.77 1 .00000 0.00 0
 9 ......... .00047 0.13 0 .00120 0.36 0 .00000 0.00 0
 10 ......... . 00019 0.05 0 .00056 0.17 0 .00000 0.00 0
 11 ......... . 00008 0.02 0 .00026 0.08 0 .00000 0.00 0
 12 ......... . 00003 0.01 0 .00012 0.04 0 .00000 0.00 0
 13 ......... . 00001 0.00 0 .00006 0.02 0 .00000 0.00 0
 14 ......... . 00001 0.00 0 .00003 0.01 0 .00000 0.00 0
 15 ......... 0.00000 0.00 0 0.00002 0.01 0 0.00000 0.00 0

 Totals .. . ......... 282.00 282 .......... 300.00 300 .......... 127.00 127

 International Harvester

 1........... 0.55167 167.15 171 0.56083 168.81 168 0.88750 102.95 98
 2 ......... . 24733 74.94 75 .24630 74.14 82 .09984 11.58 17
 3 ......... . 11089 33.60 33 .10817 32.56 27 .01123 1.30 1
 4 ......... . 04971 15.06 8 .04750 14.30 14 .00126 0.15 0
 5 ......... . 02229 6.75 13 .02086 6.28 5 .00014 0.02 0
 6 ......... . 00999 3.03 1 .00916 2.76 3 .00002 0.00 0
 7 ......... . 00448 1.36 1 .00402 1.21 1 .00000 0.00 0
 8 ......... . 00201 0.61 1 .00177 0.53 1 .00000 0.00 0
 9 ......... . 00090 0.27 0 .00078 0.23 0 .00000 0.00 0
 10 ......... . 00040 0.12 0 .00034 0.10 0 .00000 0.00 0
 11 ......... . 00018 0.05 0 .00015 0.05 0 .00000 0.00 0
 12 ......... . 00008 0.02 0 .00007 0.02 0 .00000 0.00 0
 13 ......... . 00004 0.01 0 .00003 0.01 0 .00000 0.00 0
 14 ......... . 00002 0.00 0 .00001 0.00 0 .00000 0.00 0
 15 ......... 0.00001 0.00 0 0.00001 0.00 0 0.00000 0.00 0

 Totals .. . ......... 303.00 303 .......... 301.00 301 .......... 116.00 116
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 and 11], however, Alexander goes on to
 test various other mechanical trading
 techniques, one of which involved a sim-
 plified form of the Dow theory. It turns
 out that most of these other techniques
 provide better profits than his filter tech-
 nique, and indeed better profits than
 buy-and-hold. This again led him to con-
 clude that the independence assumption
 of the random-walk model had been
 overturned.

 Unfortunately a serious error remains,
 even in Alexander's latest computations.
 The error arises from the fact that he
 neglects dividends in computing profits
 for all of his mechanical trading rules.
 This tends to overstate the profitability
 of these trading rules relative to buy-
 and-hold. The reasoning is as follows.
 Under the buy-and-hold method the
 total profit is the price change for the
 time period plus any dividends that have
 been paid. Thus dividends act simply to
 increase the profitability of holding stock.
 All of Alexander's more complicated
 trading rules, however, involve short
 sales. In a short sale the borrower of the
 securities is usually required to reimburse
 the lender for any dividends that are
 paid while the short position is outstand-
 ing. Thus taking dividends into consid-
 eration will always tend to reduce the
 profitability of a mechanical trading rule
 relative to buy-and-hold. In fact, since in
 Alexander's computations the more com-
 plicated techniques are not substantially
 better than buy-and-hold, we would sus-
 pect that in most cases proper adjust-
 ment for dividends would probably com-
 pletely turn the tables in favor of the
 buy-and-hold method.

 The above discussion would seem to
 raise grave doubts concerning the valid-
 ity of Alexander's most recent empirical
 results and thus of the conclusions he
 draws from these results. Because of the

 complexities of the issues, however, these

 doubts cannot be completely or system-

 atically resolved within the confines of
 this paper. In a study now in progress

 various mechanical trading rules will be
 tested on data for individual securities
 rather than price indices. We turn now
 to a discussion of some of the preliminary
 results of this study.

 Alexander's filter technique has been
 applied to the price series for the indi-
 vidual securities of the Dow-Jones Indus-
 trial Average used throughout this re-

 port. Filters from 0.5 per cent to 50 per
 cent were used. All profits were comput-

 ed on the basis of a trading block of 100
 shares, taking proper account of divi-
 dends. That is, if an ex-dividend date
 occurs during some time period, the
 amount of the dividend is added to
 the net profits of a long position open
 during the period, or subtracted from the
 net profits of a short position. Profits
 were also computed gross and net of
 broker's commissions, where the commis-
 sions are the exact commissions on lots
 of 100 shares at the time of transaction.
 In addition, for purposes of comparison
 the profits before commissions from buy-
 ing and holding were computed for each
 security.

 The results are shown in Table 16.
 Columns (1) and (2) of the table show
 average profits per filter, gross and net
 of commissions. Column (3) shows profits
 from buy-and-hold. Although they must
 be regarded as very preliminary, the re-
 sults are nevertheless impressive. We see
 in column (2) that, when commissions
 are taken into account, profits per filter
 are positive for only four securities. Thus,
 from the point of view of the average in-
 vestor, the results produced by the filter
 technique do not seem to invalidate the
 independence assumption of the random-
 walk model. In practice the largest prof-
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 its under the filter technique would seem
 to be those of the broker.

 A comparison of columns (1) and (3)
 also yields negative conclusions with re-
 spect to the filter technique. Even ex-
 cluding commissions, in only seven cases
 are the profits per filter greater than
 those of buy-and-hold. Thus it would
 seem that even for the floor trader, who
 of course avoids broker commissions, the

 filter technique cannot be used to make
 expected profits greater than those of

 buy-and-hold. It would seem, then, that
 from the trader's point of view the inde-
 pendence assumption of the random-walk
 model is an adequate description of real-
 ity.

 Although in his later article [2] Alex-
 ander seems to accept the validity of the
 independence assumption for the pur-
 poses of the investor or the trader, he
 argues that, from the standpoint of the
 academician, a stronger test of independ-
 ence is relevant. In particular, he argues

 TABLE 16

 SUMMARY OF FILTER PROFITABILITY IN RELATION TO

 NAIVE BUY-AND-HOLD TECHNIQUE*

 PROFITS PER FILTERt

 STOCK Without With
 Commissions Commissions Buy-and-Hold
 (1) (2) (3)

 Allied Chemical .............. 648.37 -10,289.33 2,205.00
 Alcoa ............ . 3,207.40 - 3,929.42 - 305.00
 American Can . ....... - 844.32 - 5,892.85 1,387.50
 A.T.&T . ..................... 16,577.26 4,912.84 20,005.00
 American Tobacco ............ 8,342.61 - t,467.71 7,205.00
 Anaconda .................... - 28.26 - 7,145.82 862.50
 Bethlehem Steel .............. - 837.94 - 6,566.80 652.50
 Chrysler ..................... - 954.68 -12,258.61 - 1,500.00
 Du Pont ............ . 6,564.21 - 465.35 9,550.00
 Eastman Kodak ............ . 6,584.95 - 5,926.10 11,860.50
 General Electric .... I .......... - 107.06 - 8,601.28 2,100.00
 General Foods ................ 11,370.33 2,266.89 11,420.00
 General Motors ....... ....... - 1,099.40 - 8,440.42 2,025.00
 Goodyear .................... - 2,241.28 -17,)323.20 2,920.70
 International Harvester ....... - 735.95 - 7,444.92 3,045.00
 International Nickel . . 5,231.25 - 3,509.97 5,892.50
 International Paper .......... . 2,266.82 - 7,976.68 - 278.10
 Johns Manville ...... N ........ - 1,090.22 - 8,368.44 1,462.50
 Owens Illinois ................ 727.27 - 5,960.05 3,437.50
 Procter & Gamble ............ 12,202.83 4,561.52 8,550.00
 Sears ........ .4,871.36 408.65 5,195.00
 Standard Oil (Calif.) .- 3639.79 -21,055.08 5,326.50
 Standard Oil (N.J.) ...... ..... - 1,416.48 - 6,208.68 1,380.00
 Swift & Co ................... - 923.07 - 8,161.76 552.50
 Texaco ...................... 2,803.98 - 5,626.11 6,546.50
 Union Carbide ............ . 3,564.02 - 1,612.83 1,592.50
 United Aircraft ............... - 1,190.10 - 8,369.88 562.50
 U.S. Steel . ................... 1,068.23 - 5,650.03 475.00
 Westinghouse ................ - 338.85 -12,034.56 745.00
 Woolworth . ......... 4,190.78 - 2,403.34 3,225.00

 * All figures are computed on the basis of 100 shares. Column (1) is total profits minus total losses on all
 filters, divided by the number of different filters tried on the security. Column (2) is the same as column (1) except
 that total profits and losses are computed net of commissions. Column (3) is last price plus any dividends paid
 during the period, minus the initial price for the period.

 t The different filters are from 0.5 per cent to 5 per cent by steps of 0.5 per cent; from 6 per cent to 10 per
 cent by steps of 1 per cent; from 12 per cent to 20 per cent by steps of 2 per cent; and then 25 per cent, 30 per
 cent, 40 per cent and 50 per cent.
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 that the academic researcher is not in-
 terested in whether the dependence in
 series of price changes can be used to in-
 crease expected profits. Rather, he is
 primarily concerned with determining

 whether the independence assumption is
 an exact description of reality. In essence
 he proposes that we treat independence

 as a extreme null hypothesis and test it
 accordingly.

 At this time we will ignore important
 counterarguments as to whether a strict
 test of an extreme null hypothesis is like-
 ly to be meaningful, given that for prac-
 tical purposes the hypothesis would seem
 to be a valid approximation to reality for
 both the statistician and the investor.

 We simply note that a signs test applied
 to the profit figures in column (1) of
 Table 16 would not reject the extreme
 null hypothesis of independence for any
 of the standard significance levels. Six-
 teen of the profit figures in column (1)
 are positive and fourteen are negative,
 which is not very far from the even split
 that would be expected under a pure ran-
 dom model without trends in the price
 levels. If we allowed for the long-term
 upward bias of the market, the results
 would conform even more closely to the
 predictions of the strict null hypothesis.
 Thus the results produced by the filter
 technique do not seem to overturn the
 independence assumption of the random-
 walk model, regardless of how strictly
 that assumption is interpreted.

 Finally, we emphasize again that these
 results must be regarded as preliminary.
 Many more complicated analyses of the
 filter technique are yet to be completed.
 For example, although average profits
 per filter do not compare favorably with
 buy-and-hold, there may be particular
 filters which are consistently better than
 buy-and-hold for all securities. We pre-
 fer, however, to leave such issues to a

 later paper. For now suffice it to say that
 preliminary results seem to indicate that
 the filter technique does not overturn the
 independence assumption of the random-
 walk model.

 D. DISTRIBUTION OF SUCCESSORS

 TO LARGE VALUES

 Mandelbrot [37, pp. 418-19] has sug-
 gested that one plausible form of de-
 pendence that could partially account
 for the long tails of empirical distribu-
 tions of price changes is the following:
 Large changes may tend to be followed
 by large changes, but of random sign,
 whereas small changes tend to be fol-
 lowed by small changes.6 The economic
 rationale for this type of dependence
 hinges on the nature of the information
 process in a world of uncertainty. The
 hypothesis implicitly assumes that when
 important new information comes into
 the market, it cannot always be evalu-
 ated precisely. Sometimes the immediate
 price change caused by the new informa-
 tion will be too large, which will set in
 motion forces to produce a reaction. In
 other cases the immediate price change
 will not fully discount the information,
 and impetus will be created to move the
 price again in the same direction.

 The statistical implication of this hy-
 pothesis is that the conditional probabil-
 ity that tomorrow's price change will be
 large, given that today's change has been
 large, is higher than the unconditional
 probability of a large change. To test
 this, empirical distributions of the imme-
 diate successors to large price changes
 have been computed for the daily differ-

 36 Although the existence of this type of price be-
 havior could not be used by the investor to increase
 his expected profits, the behavior does fit into the
 statistical definition of dependence. That is, knowl-
 edge of today's price change does condition our pre-
 diction of the size, if not the sign, of tomorrow's
 change.
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 ences of ten stocks. Six of the stocks were
 chosen at random. They include Allied
 Chemical, American Can, Eastman Ko-
 dak, Johns Manville, Standard Oil of
 New Jersey, and U.S. Steel. The other
 four were chosen because they showed
 longer than average tails in the tests of
 Sections III and IV. A large daily price
 change was defined as a change in log
 price greater than 0.03 in absolute value.

 The results of the computations are
 shown in Table 17. The table is arranged
 to facilitate a direct comparison between
 the frequency distributions of successors
 to large daily price changes and the fre-

 quency distributions of all price changes.
 It shows for each stock the number and
 relative frequency of observations in the
 distribution of successors within given
 ranges of the distribution of all price
 changes. For example, the number in
 column (1) opposite Allied Chemical in-
 dicates that there are twenty-seven ob-
 servations in the distribution of succes-
 sors to large values that fall within the
 intersextile range of the distribution of
 all price changes for Allied Chemical.
 The number in column (6) opposite Al-
 lied Chemical indicates that twenty-
 seven observations are 55.1 Der cent of

 TABLE 17

 DISTRIBUTIONS OF SUCCESSORS TO LARGE VALUES*

 Intersextile 2 Per Cent 1 Per Cent > 1 Per Cent Total
 Stock (1) (2) (3) (4) (5)

 Number

 Allied Chemical 27 46 48 1 49
 American Can 13 26 27 5 32
 A.T.&T .4 12 14 2 16
 Eastman Kodak 25 35 39 5 44
 Goodyear .40 66 66 4 70
 Johns Manville 38 62 63 3 66
 Sears .14 25 28 3 31
 Standard Oil (N.J.).. 11 18 18 2 20
 United Aircraft 49 78 84 4 88
 U.S. Steel .14 27 31 5 36

 Frequency

 (6) (7) (8) (9)

 Expected frequency. 0.6667 0.9600 0.9800 0.0200
 Allied Chemical ..... . 5510 .9388 .9796 .0204
 American Can ...... . 4063 .8125 .8438 .1562
 A.T.&T ............ . 2500 .7500 .8750 .1250
 Eastman Kodak.... .5682 .7955 .8864 .1136
 Goodyear .......... . 5714 .9429 .9429 .0571
 Johns Manville ..... .5758 .9394 .9545 .0455
 Sears ............. . 4516 .8065 .9032 .0968
 Standard Oil (N.J.).. .5500 .9000 .9000 .1000
 United Aircraft ... . .5568 .8864 .9545 .0455
 U.S. Steel .......... 0.3889 0.7500 0.8611 0.1389

 * Number and frequency of observations in the distributions of successors within given ranges
 of the distributions of all changes. The ranges are defined as follows: Intersextile = 0.83 fractile
 -0.17 fractile; 2 per cent = 0.98 fractile -0.02 fractile; 1 per cent = 0.99 fractile -0.01 fractile.
 The fractiles are the fractiles of the distributions of all price changes and not of the distributions
 of successors to large changes.
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 the total number of successors to large
 values, whereas the distribution of all
 price changes contains, by definition,
 66.7 per cent of its observations within
 its intersextile range. Similarly, the num-
 ber in column (9) opposite Goodyear
 indicates that in the distribution of suc-
 cessors 5.7 per cent of the observations
 fall outside of the 1 per cent range,
 whereas by definition only 2 per cent of
 the observations in the distribution of
 all changes are outside this range.

 It is evident from Table 17 that the
 distributions of successors are flatter and
 have longer tails than the distributions
 of all price changes. This is best illus-
 trated by the relative frequencies. In
 every case the distribution of successors
 has less relative frequency within each
 fractile range than the distribution of all
 changes, which implies that the distribu-
 tion of successors has too much relative
 frequency outside these ranges.

 These results can be presented graphi-
 cally by means of simple scatter dia-
 grams. This is done for American Tele-
 phone and Telegraph and Goodyear in
 Figure 8. The abscissas of the graphs
 show X1, the value of the large price
 change. The ordinates show X2, the price
 change on the day immediately following
 a large change. Though it is difficult
 to make strong statements from such
 graphs, as would be expected in light of
 Table 17, it does seem that the successors
 do not concentrate around the abscissas
 of the graphs as much as would be ex-
 pected if their distributions were the
 same as the distributions of all changes.
 Even a casual glance at the graphs shows,
 however, that the signs of the successors
 do indeed seem to be random. Moreover,
 these statements hold for the graphs of
 the securities not included in Figure 8.

 In sum, there is evidence that large
 changes tend to be followed by large

 changes, but of random sign. However,
 though there does seem to be more
 bunching of large values than would be
 predicted by a purely independent mod-
 el, the tendency is not very strong. In
 Table 17 most of the successors to large
 observations do fall within the intersex-
 tile range even though more of the suc-
 cessors fall into the extreme tails than
 would be expected in a purely random
 model.

 E. SUMMARY

 None of the tests in this section give
 evidence of any important dependence in
 the first differences of the logs of stock
 prices. There is some evidence that large
 changes tend to be followed by large
 changes of either sign, but the depend-
 ence from this source does not seem to
 be too important. There is no evidence
 at all, however, that there is any depend-
 ence in the stock-price series that would
 be regarded as important for investment
 purposes. That is, the past history of the
 series cannot be used to increase the
 investor's expected profits.

 It must be emphasized, however, that,
 while the observed departures from inde-
 pendence are extremely slight, this does
 not mean that they are unimportant for
 every conceivable purpose. For example,
 the fact that large changes tend to be
 followed by large changes may not be in-
 formation which yields profits to chart
 readers; but it may be very important to
 the economist seeking to understand the
 process of price determination in the
 capital market. The importance of any
 observed dependence will always depend
 on the question to be answered.

 VI. CONCLUSION

 The purpose of this paper has been to
 test empirically the random-walk model
 of stock price behavior. The model makes
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 two basic assumptions: (1) successive
 price changes are independent, and (2)
 the price changes conform to some prob-
 ability distribution. We begin this sec-
 tion by summarizing the evidence con-
 cerning these assumptions. Then the im-
 plications of the results will be discussed
 from various points of view.

 A. DISTRIBUTION OF PRICE CHANGES

 In previous research on the distribu-
 tion of price changes the emphasis has
 been on the general shape of the distri-
 bution, and the conclusion has been that
 the distribution is approximately Gauss-
 ian or normal. Recent findings of Benoit
 Mandelbrot, however, have raised serious
 doubts concerning the validity of the
 Gaussian hypothesis. In particular, the
 Mandelbrot hypothesis states that em-
 pirical distributions of price changes con-
 form better to stable Paretian distribu-
 tions with characteristic exponents less
 than 2 than to the normal distribution
 (which is also stable Paretian but with
 characteristic exponent exactly equal to
 2). The conclusion of this paper is that
 Mandelbrot's hypothesis does seem to be
 supported by the data. This conclusion
 was reached only after extensive testing
 had been carried out. The results of this
 testing will now be summarized.

 If the Mandelbrot hypothesis is cor-
 rect, the empirical distributions of price
 changes should have longer tails than
 does the normal distribution. That is, the
 empirical distributions should contain
 more relative frequency in their extreme
 tails than would be expected under a
 simple Gaussian hypothesis. In Section
 III frequency distributions were comput-
 ed for the daily changes in log price of
 each of the thirty stocks in the sample.
 The results were quite striking. The em-
 pirical distribution for each stock con-
 tained more relative frequency in its cen-

 tral bell than would be expected under a
 normality hypothesis. More important,
 however, in every case the extreme tails
 of the distributions contained more rela-
 tive frequency than would be expected
 under the Gaussian hypothesis. As a
 further test of departures from normal-
 ity, a normal probability graph for the
 price changes of each stock was also ex-
 hibited in Section III. As would be ex-
 pected with long-tailed frequency distri-
 butions, the graphs generally assumed
 the shape of an elongated S.

 In an effort to explain the departures
 from normality in the empirical fre-
 quency distributions, two simple compli-
 cations of the Gaussian model were dis-
 cussed and tested in Section III. One in-
 volved a variant of the mixture of distri-
 butions approach and suggested that
 perhaps weekend and holiday changes
 come from a normal distribution, but
 with a higher variance than the distribu-
 tion of daily changes within the week.
 The empirical evidence, however, did not
 support this hypothesis. The second ap-
 proach, a variant of the non-stationarity
 hypothesis, suggested that perhaps the
 leptokurtosis in the empirical frequency
 distributions is due to changes in the
 mean of the daily differences across time.
 The empirical tests demonstrated, how-
 ever, that the extreme values in the
 frequency distributions are so large that
 reasonable shifts in the mean cannot
 adequately explain them.

 Section IV was concerned with testing
 the property of stability and developing
 estimates of the characteristic exponent
 a of the underlying stable Paretian proc-
 ess. It was emphasized that rigorously
 established procedures for estimating the
 parameters of stable Paretian distribu-
 tions are practically unknown because
 for most values of the characteristic ex-
 ponent there are no known, explicit
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 expressions for the density functions. As
 a result there is virtually no sampling
 theory available. It was concluded that
 at present the only way to get satisfac-
 tory estimates of the characteristic ex-
 ponent is to use more than one estimat-
 ing procedure. Thus three different

 techniques for estimating a were dis-
 cussed, illustrated, and compared. The
 techniques involved double-log-normal-
 probability graphing, sequential compu-
 tation of variance, and range analysis. In
 a very few cases a seemed to be so close
 to 2 that it was indistinguishable from 2
 in the estimates. In the vast majority of
 cases, however, the estimated values were
 less than 2, with some dispersion about
 an average value close to 1.90. On the
 basis of these estimates of a and the re-
 sults produced by the frequency distribu-
 tions and normal probability graphs, it
 was concluded that the Mandelbrot hy-
 pothesis fits the data better than the
 Gaussian hypothesis.

 B. INDEPENDENCE

 Section V of this paper was concerned,
 with testing the validity of the independ-
 ence assumption of the random-walk
 model on successive price changes for
 differencing intervals of one, four, nine,
 and sixteen days. The main techniques
 used were a serial correlation model, runs
 analysis, and Alexander's filter tech-
 nique. For all tests and for all differenc-
 ing intervals the amount of dependence
 in the data seemed to be either extremely
 slight or else non-existent. Finally, there
 was some evidence of bunching of large
 values in the daily differences, but the
 degree of bunching seemed to be only
 slightly greater than would be expected
 in a purely random model. On the basis
 of all these tests it was concluded that
 the independence assumption of the ran-
 dom-walk model seems to be an adequate
 description of reality.

 C. IMPLICATIONS OF INDEPENDENCE

 We saw in Section II that a situation
 where successive price changes are inde-
 pendent is consistent with the existence of
 an "efficient" market for securities, that
 is, a market where, given the available

 information, actual prices at every point
 in time represent very good estimates of
 intrinsic values. We also saw that two
 factors that could possibly contribute to-
 ward establishing independence are (1)
 the existence of many sophisticated chart
 readers actively competing with each
 other to take advantage of any depend-
 encies in series of price changes, and (2)
 the existence of sophisticated analysts,
 where sophistication implies an ability
 both to predict better the occurrence of
 economic and political events which have
 a bearing on prices and to evaluate the
 eventual effects of such events on prices.

 If his activities succeed in helping to
 establish independence of successive price
 changes, then the sophisticated chart
 reader has defeated his own purposes.
 When successive price changes are inde-
 pendent, there can be no chart-reading
 technique which makes the expected
 profits of the investor greater than they
 would be under a naive buy-and-hold
 model. Such dogmatic statements do not
 apply to superior intrinsic value analysis,
 however. People who can consistently
 predict the occurrence of important
 events and evaluate their effects on
 prices will usually make larger profits

 than people who do not have this talent.
 The fact that the activities of these su-

 perior analysts help to make successive
 price changes independent does not imply
 that their expected profits cannot be
 greater than those of the investor who
 follows a buy-and-hold policy.

 Of course, in practice, identifying peo-
 ple who qualify as superior analysts is
 not an easy task. The simple criterion
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 put forth in Section II was the following:
 A superior analyst is one whose gains
 over many periods of time are consistently
 greater than those of the market. There
 are many institutions and individuals
 that claim to meet this criterion. In a
 separate paper their claims will be sys-
 tematically tested. We present here some

 of the preliminary results for open-end
 mutual funds."7

 In their appeals to the public, mutual
 funds usually make two basic claims: (1)
 because it pools the resources of many
 individuals, a fund can diversify much
 more effectively than the average small
 investor; and (2) because of its manage-
 ment's closeness to the market, the fund
 is better able to detect "good buys" in
 individual securities. In most cases the
 first claim is probably true. The second,
 however, implies that mutual funds pro-
 vide returns higher than those earned by
 the market as a whole. It is this second
 claim that we now wish to test.

 The return earned by the "market"
 during any time period can be measured
 in various ways. One possibility has been
 extensively explored by Fisher and Lorie
 [16] in a recent issue of this Journal. The
 basic assumption in all their computa-
 tions is that at the beginning of each
 period studied the investor puts an equal
 amount of money in each common stock
 listed at that time on the New York
 Stock Exchange. Different rates of return
 for the period are then computed for
 different possible tax brackets of the in-
 vestor, first under the assumption that
 all dividends are reinvested in the month
 paid and then under the assumption that
 dividends are not reinvested. All compu-

 tations include the relevant brokers'

 commissions. Following the Lorie-Fisher

 procedure, a tax-exempt investor who
 initially entered the market at the end
 of 1950 and reinvested subsequent divi-
 dends in the securities paying them would
 have made a compound annual rate of
 return of 14.7 per cent upon disinvesting
 his entire portfolio at the end of 1960.

 Similar computations have been car-
 ried out for thirty-nine open-end mutual
 funds. The funds studied have been
 chosen on the following basis: (1) the
 fund was operating during the entire
 period from the end of 1950 through the
 end of 1960; and (2) no more than 5 per
 cent of its total assets were invested in
 bonds at the end of 1960. It was assumed
 that the investor put $10,000 into each
 fund at the end of 1950, reinvested all
 subsequent dividend distributions, and
 then cashed in his portfolio at the end
 of 1960. It was also assumed, for sim-
 plicity, that the investor was tax exempt.

 For our purposes, two different types
 of rates of return are of interest, gross
 and net of any loading charges. Most
 funds have a loading charge of about 8
 per cent on new investment. That is, on
 a gross investment of $10,000 the inves-
 tor receives only about $9,200 worth of
 the fund's shares. The remainng $800
 is usually a straight salesman's commis-
 sion and is not available to the fund's
 management for investment. From the
 investor's point of view the relevant rate
 of return on mutual funds to compare
 with the "market" rate is the return
 gross of loading charges, since the gross
 sum is the amount that the investor allo-
 cates to the funds. It is also interesting,
 however, to compute the yield on mutual
 funds net of any loading changes, since
 the net sum is the amount actually avail-
 able to management. Thus the net return
 is the relevant measure of management's
 performance in relation to the market.

 For the period 1950-60 our mutual-
 fund investments had a gross return of

 37The preliminary results reported below were
 prepared as an assigned term paper by one of my
 students, Gerhard T. Roth. The data source for all
 the calculations was Wiesenberger [24].
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 14.1 per cent which is below the 14.7 per
 cent earned by the "market," as defined

 by Fisher and Lorie. The return, net of
 loading charges, on the mutual funds
 was 14.9 per cent, slightly but not sig-
 nificantly above the "market" return.
 Thus it seems that, at least for the period
 studied, mutual funds in general did not
 do any better than the market.

 Although mutual funds taken together
 do no better than the market, in a world
 of uncertainty, during any given time
 period some funds will do better than the
 market and some will do worse. When a
 fund does better than the market during

 some time period, however, this is not
 necessarily evidence that the fund's man-
 agement has knowledge superior to that
 of the average investor. A good showing
 during a particular period may merely be
 a chance result which is, in the long run,
 balanced by poor showings in other peri-
 ods. It is only when a fund consistently
 does better than the market that there

 is any reason to feel that its higher than
 average returns may not be the work of
 lady luck.

 In an effort to examine the consistency
 of the results obtained by different funds
 across time two separate tests were car-
 ried out. First, the compound rate of
 return, net of loading charges, was com-
 puted for each fund for the entire 1950-
 60 period. Second, the return for each

 fund for each year was computed accord-

 ing to the formula

 r=pj, t+l+ dj, t+ - pjt
 Pjt

 t= 1950, ..., 1959

 where Pjt is the price of a share in fund
 j at the end of year t, pj, t+1 is the price

 at the end of year t + 1, and dj, t+1 are
 the dividends per share paid by the fund

 during year t + 1. For each year the
 returns on the different funds were then

 ranked in ascending order, and a number
 from 1 to 39 was assigned to each.

 The results are shown in Table 18.
 The order of the funds in the table is
 according to the return, net of loading
 charges, shown by the fund for the period
 1950-60. This net return is shown in
 column (1). Columns (2)-(11) show the
 relative rankings of the year-by-year
 returns of each fund.

 The most impressive feature of Table
 18 is the inconsistency in the rankings of
 year-by-year returns for any given fund.
 For example, out of thirty-nine funds, no
 single fund consistently had returns high
 enough to place it among the top twenty
 funds for every year in the time period.
 On the other hand no single fund had
 returns low enough to place it among the
 bottom twenty of each year. Only two
 funds, Selected American and Equity,
 failed to have a return among the top
 ten for some year, and only three funds,
 Investment Corporation of America,
 Founders Mutual, and American Mu-
 tual, do not have a return among the
 bottom ten for some year. Thus funds in
 general seem to do no better than the
 market; in addition, individual funds do
 not seem to outperform consistently their
 competitors.38 Our conclusion, then, must
 be that so far the sophisticated analyst
 has escaped detection.

 D. IMPLICATIONS OF THE MAN-

 DELBROT HYPOTHESIS

 The main conclusion of this paper
 with respect to the distribution of price
 changes is that a stable Paretian distri-
 bution with characteristic exponent a
 less than 2 seems to fit the data better

 Is These results seem to be in complete agreement
 with those of Ira Horowitz [22] and with the now
 famous "Study of Mutual Funds," prepared for
 the Securities and Exchange Commission by the
 Wharton School, University of Pennsylvania (87th
 Cong., 2d sess. [Washington, D.C.: Government
 Printing Office, 1962]).
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 than the normal distribution. This con-
 clusion has implications from two points
 of view, economic and statistical, which
 we shall now discuss in turn.

 1. ECONOMIC IMPLICATIONS

 The important difference between a

 market dominated by a stable Paretian
 process with characteristic exponent a <

 2 and a market dominated by a Gaussian
 process is the following. In a Gaussian
 market, if the sum of a large number of
 price changes across some long time pe-
 riod turns out to be very large, chances
 are that each individual price change
 during the time period is negligible when
 compared to the total change. In a mar-
 ket that is stable Paretian with a < 2,

 TABLE 18

 YEAR-BY-YEAR RANKING OF INDIVIDUAL FUND RETURNS

 YEAR

 FUND RETURN
 ON NET

 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

 Keystone Lower Price. . 18.7 29 1 38 5 3 8 35 1 1 36
 T Rowe Price Growth.. 18.7 1 33 2 8 14 15 2 25 7 4
 Dreyfuss .............. 18.4 37 37 14 3 7 11 3 2 3 7
 Television Electronic... 18.4 21 4 9 2 33 20 16 2 4 20
 National Investors Corp. 18.0 3 35 4 19 27 4 5 5 8 1
 De Vegh MutualFund.. 17.7 32 4 1 8 14 4 8 15 23 36
 Growth Industries ... . 17.0 7 34 14 17 9 9 20 5 6 11
 Massachusetts Investors
 Growth ............. 16.9 5 36 31 11 9 1 23 4 9 4

 Franklin Custodian ..... 16.5 26 2 4 13 33 20 16 5 9 4
 Investment Co. of Ameri-
 ca .............6...0.0 21 15 14 11 17 15 23 15 15 15

 Chemical Fund, Inc.... 15.6 1 39 14 27 3 33 1 27 4 23
 Founders Mutual ...... 15.6 21 13 25 8 2 20 16 11 13 28
 Investment Trust of Bos-
 ton ................. 15.6 6 3 25 3 14 26 31 20 29 20

 American Mutual ...... 15.5 14 13 4 22 14 13 16 25 25 4
 Keystone Growth...... 15.3 29 15 25 1 1 1 39 11 18 38
 Keystone High ........ 15.2 10 7 3 27 23 36 5 27 25 11
 Aberdeen Fund ........ 15.1 32 23 9 25 9 7 10 27 7 30
 Massachusetts Investors
 Trust ............... 14.8 8 9 14 16 9 15 20 18 32 28

 Texas Fund, Inc ....... 14.6 3 15 9 32 23 26 5 27 37 7
 Eaton & Howard Stock. 14.4 14 9 4 17 20 15 13 37 29 17
 Guardian Mutual ...... 14.4 21 26 25 34 31 29 13 20 15 2
 Scudder, Stevens, Clark. 14.3 14 23 14 19 27 15 29 9 15 30
 Investors Stock Fund... 14.2 8 28 21 22 27 20 23 5 29 23
 Fidelity Fund, Inc..... . 14.1 21 6 31 6 23 29 33 11 25 23
 Fundamental Inv ...... 13.8 14 15 31 15 9 11 31 18 25 30
 Century Shares ........ 13.5 14 28 35 25 3 20 23 31 34 2
 Bullock Fund Ltd..... . 13.5 29 9 21 19 14 9 20 34 34 20
 Financial Industries.... 13.0 26 15 31 13 19 29 34 20 9 35
 Group Common Stock.. 13.0 38 8 25 27 27 33 8 20 34 17
 Incorporated Investors 12.9 14 13 37 6 3 13 37 11 18 39
 Equity Fund....I.I.....I.... 12.9 14 27 21 32 31 33 13 31 18 23
 Selected American
 Shares .............. 12.8 21 15 21 31 23 20 23 15 32 30

 Dividend Shares ....... 12.7 32 7 14 34 20 32 4 37 37 11
 General Capital Corp... 12.4 10 28 9 38 35 39 23 34 13 23
 Wisconsin Fund ....... 12.3 32 26 4 37 35 38 10 34 18 7
 International Resources. 12.3 10 37 39 22 35 1 37 39 1 11
 Delaware Fund ........ 12.1 36 23 25 27 39 26 29 9 23 30
 Hamilton Fund ........ 11.9 38 28 9 34 35 36 10 31 18 17
 Colonial Energy ....... 10.9 10 15 35 39 20 4 36 20 39 10
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 however, the size of the total will more
 than likely be the result of a few very
 large changes that took place during
 much shorter subperiods. In other words,
 whereas the path of the price level of a
 given security in a Gaussian market will
 be fairly continuous, in a stable Paretian
 market with a < 2 it will usually be dis-
 continuous. More simply, in a stable
 Paretian market with a < 2, the price
 of a security will often tend to jump up
 or down by very large amounts during
 very short time periods."9

 When combined with independence of
 successive price changes, the discontinu-
 ity of price levels in a stable Paretian
 market may provide important insights
 into the nature of the process that gener-
 ates changes in intrinsic values across
 time. We saw earlier that independence
 of successive price changes is consistent
 with an "efficient" market, that is, a
 market where prices at every point in
 time represent best estimates of intrin-
 sic values. This implies in turn that,
 when an intrinsic value changes, the ac-
 tual price will adjust "instantaneously,"
 where instantaneously means, among
 other things, that the actual price will
 initially overshoot the new intrinsic value
 as often as it will undershoot it.

 In this light the combination of inde-
 pendence and a Gaussian distribution for
 the price changes would imply that in-
 trinsic values do not very often change
 by large amounts. On the other hand,
 the combination of independence and a
 stable Paretian distribution with a < 2
 for the price changes would imply that
 intrinsic values often change by large
 amounts during very short periods of
 time-a situation quite consistent with a
 dynamic economy in a world of uncer-
 tainty.

 The discontinuous nature of a stable
 Paretian market has some more practical
 implications, however. The fact that
 there are a large number of abrupt
 changes in a stable Paretian market
 means that such a market is inherently
 more risky than a Gaussian market. The
 variability of a given expected yield is
 higher in a stable Paretian market than
 it would be in a Gaussian market, and
 the probability of large losses is greater.

 Moreover, in a stable Paretian market
 with a < 2 speculators cannot usually
 protect themselves from large losses by
 means of such devices as "stop-loss" or-
 ders. If the price level is going to fall
 very much, the total decline will prob-
 ably be accomplished very rapidly, so
 that it may be impossible to carry out
 many "stop-loss" orders at intermediate
 prices.

 Finally, in some cases it may be pos-
 sible a posteriori to find "causal explana-
 tions" for specific large price changes in
 terms of more basic economic variables.
 If the behavior of these more basic vari-
 ables is itself largely unpredictable, how-
 ever, the "causal explanation" will not be
 of much help in forecasting the appear-
 ance of large changes in the future. In
 addition it must be kept in mind that in
 the series we have been studying, there
 are very many large changes and the
 "explanations" are far from obvious. For
 example, the two largest changes in the
 Dow-Jones Industrial Average during the
 period covered by the data occurred on
 May 28 and May 29, 1962. Market ana-
 lysts are still trying to find plausible "ex-
 planations" for these two days.

 2. STATISTICAL IMPLICATIONS

 The statistical implications of the
 Mandelbrot hypothesis follow mostly
 from the absence of a finite variance for
 stable Paretian distributions with char-

 F3 or a proof of these statements see Darling
 [13] or Anov and Bobnov [4].
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 acteristic exponents less than 2. In prac-
 tical terms "infinite" variance means
 that the sample variance and standard
 deviation of a stable Paretian process
 with a < 2 will show extremely erratic
 behavior even for very large samples.
 That is, for larger and larger sample sizes

 the variability of the sample variance
 and standard deviation will not tend to
 dampen nearly as much as would be ex-
 pected with a Gaussian process. Because
 of their extremely erratic behavior, the
 sample variance and standard deviation
 are not meaningful measures of the vari-
 ability inherent in a stable Paretian
 process with a < 2.

 This does not mean, however, that we
 are helpless in describing the dispersion
 of such a process. There are other meas-
 ures of variability, such as interfractile
 ranges and the mean absolute deviation,
 which have both finite expectation and
 much less erratic sampling behavior than
 the variance and standard deviation.40

 Figure 9 presents a striking demon-
 stration of these statements. It shows the

 path of the sequential sample standard
 deviation and the sequential mean abso-
 lute deviation for four securities.4' The
 upper set of points on each graph repre-
 sents the path of the standard deviation,
 while the lower set represents the sample
 sequential mean absolute deviation. In

 every case the sequential mean absolute
 deviation shows less erratic behavior as
 the sample size is increased than does the
 sequential standard deviation. Even for
 very large samples the sequential stand-
 ard deviation often shows very large dis-
 crete jumps, which are of course due to
 the occurrence of extremely large price
 changes in the data. As the sample size
 is increased, however, these same large
 price changes do not have nearly as strong
 an effect on the sequential mean absolute
 deviation. This would seem to be strong
 evidence that for distributions of price
 changes the mean absolute deviation is a
 much more reliable estimate of variabil-
 ity than the standard deviation.

 In general, when dealing with stable
 Paretian distributions with characteristic
 exponents less than 2, the researcher
 should avoid the concept of variance
 both in his empirical work and in any
 economic models he may construct. For
 example, from an empirical point of
 view, when there is good reason to believe
 that the distribution of residuals has in-
 finite variance, it is not very appealing
 to use a regression technique that has as
 its criterion the minimization of the sum
 of squared residuals from the regression
 line, since the expectation of that sum
 will be infinite.

 This does not mean, however, that we
 are helpless when trying to estimate the
 parameters of a linear model if the vari-
 ables of interest are subject to stable
 Paretian distributions with infinite vari-
 ances. For example, an alternative tech-
 nique, absolute-value regression, involves
 minimizing the sum of the absolute val-
 ues of the residuals from the regression
 line. Since the expectation of the absolute
 value of the residual will be finite as long
 as the characteristic exponent a of the
 distribution of residuals is greater than 1,
 this minimization criterion is meaning-

 40 The mean absolute deviation is defined as

 I D I - - I X2l Njj= - N '

 where x is the variable and N is the total sample size.

 41 Sequential computation of a parameter means
 that the cumulative sequential sample value of the
 parameter is recomputed at fixed intervals subse-
 quent to the beginning of the sampling period. Each
 new computation of the parameter in the sequence
 contains the same values of the random variable as
 the computation immediately preceding it, plus any
 new values of the variable that have since been
 generated.
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 ful for a wide variety of stable Paretian
 processes.42

 A good example of an economic model

 which uses the notion of variance in situ-
 ations where there is good reason to be-
 lieve that variances are infinite is the
 classic Markowitz [39] analysis of efficient
 portfolios. In Markowitz' terms, efficient
 portfolios are portfolios which have max-

 imum expected return for given variance
 of expected return. If yields on securities

 follow distributions with infinite vari-

 ances, however, the expected yield of a
 diversified portfolio will also follow a

 42 For a discussion of the technique of absolute
 value regression see Wagner [46], [47]. Wise [49] has
 shown that when the distribution of residuals has
 characteristic exponent 1 < a < 2, the usual least
 squares estimators of the parameters of a regression
 equation are consistent and unbiased. He has further

 shown, however, that when a < 2, the least squares
 estimators are not the most efficient linear esti-
 mators, i.e., there are other techniques for which
 the sampling distributions of the regression parame-
 ters have lower dispersion than the sampling distri-
 butions of the least squares estimates. Of course it
 is also possible that some non-linear technique, such
 as absolute value regression, provides even more
 efficient estimates than the most efficient linear
 estimators.
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 FIG. 9.-Sequential standard deviations and sequential mean absolute deviations. Horizontal axes
 show sequential sample sizes; vertical axes show parameter estimates.
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 distribution with an infinite variance. In

 this situation the mean-variance concept
 of an efficient portfolio loses its meaning.

 This does not mean, however, that
 diversification is a meaningless concept
 in a stable Paretian market, or that it is
 impossible to develop a model for port-

 folio analysis. In a separate paper [15]
 this author has shown that, if concepts
 of variability other than the variance are

 used, it is possible to develop a model for
 portfolio analysis in a stable Paretian
 market. It is also possible to define the
 conditions under which increasing diver-
 sification has the effect of reducing the
 dispersion of the distribution of the re-
 turn on the portfolio, even though the

 variance of that distribution may be in-
 finite.

 Finally, although the Gaussian or nor-
 mal distribution does not seem to be an
 adequate representation of distributions
 of stock price changes, it is not neces-
 sarily the case that stable Paretian dis-

 tributions with infinite variances provide
 the only alternative. It is possible that
 there are long-tailed distributions with
 finite variances that could also be used to
 describe the data.43 We shall now argue,
 however, that one is forced to accept
 many of the conclusions discussed above,
 regardless of the position taken with re-
 spect to the finite-versus-infinite-vari-
 ance argument.

 For example, although one may feel
 that it is nonsense to talk about infinite
 variances when dealing with real-world
 variables, one is nevertheless forced to
 admit that for distributions of stock price
 changes the sampling behavior of the
 standard deviation is much more erratic
 than that of alternative dispersion pa-

 rameters such as the mean absolute de-

 viation. For this reason it may be better
 to use these alternative dispersion pa-
 rameters in empirical work even though

 one may feel that in fact all variances
 are finite.

 Similarly, the asymptotic properties
 of the parameters in a classical least-
 squares regression analysis are strongly
 dependent on the assumption of finite
 variance in the distribution of the resid-
 uals. Thus, if in some practical situation
 one feels that this distribution, though
 long-tailed, has finite variance, in prin-
 ciple one may feel justified in using the

 least-squares technique. If, however, one
 observes that the sampling behavior of
 the parameter estimates produced by the
 least-squares technique is much more
 erratic than that of some alternative
 technique, one may be forced to conclude
 that for reasons of efficiency the alterna-
 tive technique is superior to least squares.

 The same sort of argument can be
 applied to the portfolio-analysis problem.
 Although one may feel that in principle
 real-world distributions of returns must
 have finite variances, it is well known
 that the usual Markowitz-type efficient
 set analysis is highly sensitive to the
 estimates of the variances that are used.

 Thus, if it is difficult to develop good
 estimates of variances because of erratic
 sampling behavior induced by long-tailed
 distributions of returns, one may feel
 forced to use an alternative measure of
 dispersion in portfolio analyses.

 Finally, from the point of view of the
 individual investor, the name that the
 researcher gives to the probability dis-
 tribution of the return on a security is
 irrelevant, as is the argument concerning
 whether variances are finite or infinite.
 The investor's sole interest is in the shape
 of the distribution. That is, the only in-
 formation he needs concerns the proba-

 43 It is important to note, however, that stable
 Paretian distributions with characteristic exponents
 less than 2 are the only long-tailed distributions
 that have the crucial property of stability or invari-
 ance under addition.
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 bility of gains and losses greater than
 given amounts. As long as two different
 hypotheses provide adequate descriptions
 of the relative frequencies, the investor
 is indifferent as to whether the researcher
 tells him that distributions of returns are
 stable Paretian with characteristic expo-
 nent a < 2 or just long-tailed but with
 finite variances.

 In essence, all of the above arguments

 merely say that, given the long-tailed
 empirical frequency distributions that
 have been observed, in most cases one's
 subsequent behavior in light of these
 results will be the same whether one leans
 toward the Mandelbrot hypothesis or to-
 ward some alternative hypothesis involv-
 ing other long-tailed distributions. For

 most purposes the implications of the
 empirical work reported in this paper are
 independent of any conclusions concern-
 ing the name of the hypothesis which the
 data seem to support.

 E. POSSIBLE DIRECTIONS FOR

 FUTURE RESEARCH

 It seems safe to say that this paper
 has presented strong and voluminous
 evidence in favor of the random-walk
 hypothesis. In business and economic re-
 search, however, one can never claim to
 have established a hypothesis beyond
 question. There are always additional
 tests which would tend either to confirm
 the validity of the hypothesis or to con-
 tradict results previously obtained. In
 the final paragraphs of this paper we
 wish to suggest some possible directions
 which future research on the random-
 walk hypothesis could take.

 1. ADDITIONAL POSSIBLE TESTS

 OF DEPENDENCE

 There are two different approaches to
 testing for independence. First, one can
 carry out purely statistical tests. If these

 tend to support the assumption of inde-
 pendence, one may then infer that there
 are probably no mechanical trading rules
 based on patterns in the past history of
 price changes which will make the profits
 of the investor greater than they would
 be under a buy-and-hold policy. Second,
 one can proceed by directly testing dif-
 ferent mechanical trading rules to see
 whether or not they do provide profits
 greater than buy-and-hold. The serial-
 correlation model and runs tests dis-
 cussed in Section V are representative of
 the first approach, while Alexander's fil-
 ter technique is representative of the
 second.

 Academic research to date has tended
 to concentrate on the statistical ap-
 proach. This is true, for example, of the
 extremely sophisticated work of Granger
 and Morgenstern [19], Moore [41], Ken-
 dall [26], and others. Aside from Alexan-
 der's work [1], [2], there has really been
 very little effort by academic people to
 test directly the various chartist theories
 that are popular in the financial world.
 Systematic validation or invalidation of
 these theories would represent a real
 contribution.

 2. POSSIBLE RESEARCH ON THE DISTRI-

 BUTION OF PRICE CHANGES

 There are two possible courses which
 future research on the distribution of
 price changes could take. First, until now
 most research has been concerned with
 simply finding statistical distributions
 that seem to coincide with the empirical
 distributions of price changes. There has
 been relatively little effort spent in ex-
 ploring the more basic processes that give
 rise to the empirical distributions. In
 essence, there is as yet no general model
 of price formation in the stock market
 which explains price levels and distribu-
 tions of price changes in terms of the
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 behavior of more basic economic vari-
 ables. Developing and testing such a
 model would contribute greatly toward
 establishing sound theoretical founda-
 tions in this area.

 Second, if distributions of price changes
 are truly stable Paretian with character-
 istic exponent a < 2, then it behooves us
 to develop further the statistical theory
 of stable Paretian distributions. In par-
 ticular, the theory would be much ad-
 vanced by evidence concerning the sam-
 pling behavior of different estimators of
 the parameters of these distributions.
 Unfortunately, rigorous analytical sam-
 pling theory will be difficult to develop
 as long as explicit expressions for the
 density functions of these distributions
 are not known.

 Using Monte Carlo techniques, how-
 ever, it is possible to develop an ap-
 proximate sampling theory, even though
 explicit expressions for the density func-

 tions remain unknown. In a study now
 under way the series-expansion approxi-
 mation to stable Paretian density func-
 tions derived by Bergstrom [7] is being
 used to develop a stable Paretian random
 numbers generator. With such a random
 numbers generator it will be possible to
 examine the behavior of different esti-
 mators of the parameters of stable Pare-
 tian distributions in successive random
 samples and in this way to develop an
 approximate sampling theory. The same
 procedure can be used, of course, to
 develop sampling theory for many dif-
 ferent types of statistical tools.

 In sum, it has been demonstrated that
 first differences of stock prices seem to
 follow stable Paretian distributions with
 characteristic exponent a < 2. An im-
 portant step which remains to be taken
 is the development of a broad range of
 statistical tools for dealing with these
 distributions.
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 APPENDIX

 STATISTICAL THEORY OF STABLE PARETIAN DISTRIBUTIONS

 A. STABLE PARETIAN DISTRIBUTIONS:

 DEFINITION AND PARAMETERS

 The stable Paretian family of distributions
 is defined by the logarithm of its characteristic

 function which has the general form

 log f(t) = log E(eiue) (Al)
 = ist - 'Y tI a[1 + ig(tl I t I )w(t, a)] ,

 where u is the random variable, t is any real
 number, i is V/-1, and

 ( + ra
 Stan 2 if a l,

 w(t a)=) (A2)

 2 logltI, if a 1.

 Stable Paretian distributions have four pa-
 rameters, a, f3, 8, and y. The parameter a is
 called the characteristic exponent of the distri-
 bution. It determines the height of, or total
 probability contained in, the extreme tails of
 the distribution and can take any value in the
 interval 0 < a < 2. When a = 2, the relevant
 stable Paretian distribution is the normal dis-
 tribution.44 When a is in the interval 0 < a < 2,

 the extreme tails of the stable Paretian distri-
 butions are higher than those of the normal
 distribution, and the total probability in the
 extreme tails is larger the smaller the value of
 a. The most important consequence of this is
 that the variance exists (i.e., is finite) only in
 the limiting case a = 2. The mean, however,
 exists as long as a > 1.45

 The parameter /3 is an index of skewness
 which can take any value in the interval -1
 </ < 1. When 3 = 0, the distribution is sym-
 metric. When /3 > 0, the distribution is skewed
 right (i.e., has a long tail to the right), and the
 degree of right skewness is larger the larger the
 value of /3. Similarly when : < 0 the distribu-
 tion is skewed left, and the degree of left skew-
 ness is larger the smaller the value of /.

 The parameter 8 is the location parameter
 of the stable Paretian distribution. When the
 characteristic exponent a is greater than 1, 6
 is the expected value or mean of the distribu-

 tion. When a < 1, however, the mean of the
 distribution is not defined. In this case a will
 be some other parameter (e.g., the median
 when /3 = 0), which will describe the location
 of the distribution.

 Finally, the parameter My defines the scale
 of a stable Paretian distribution. For example,
 when a = 2 (the normal distribution), y is one-
 half the variance. When a < 2, however, the
 variance of the stable Paretian distribution is
 infinite. In this case there will be a finite pa-
 rameter y which defines the scale of the distri-

 44The logarithm of the characteristic function

 of a normal distribution is logfi(t) = iut - (u2/2)t2.
 This is the log characteristic function of a stable
 Paretian distribution with parameters a = 2, a = ,A,
 and y = u2/2. The parameters ,u and u2 are, of
 course, the mean and variance of the normal distri-
 bution.

 45 For a proof of these statements see Gnedenrko
 and Kolmogorov [171, pp. 179-83,
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 bution, but it will not be the variance. For ex-
 ample, when a = 1, f3 = 0 (which is the Cauchy
 infinite. In this case there will be a finite pa-

 rameter y which defines the scale of the distri-
 distribution), oy is the semi-interquartile range
 (i.e., one-half of the 0.75 fractile minus the 0.25
 fractile).

 B. KEY PROPERTIES OF STABLE

 PARETIAN DISTRIBUTIONS

 The three most important properties of
 stable Paretian distributions are (1) the asymp-
 totically Paretian nature of the extreme tail
 areas, (2) stability or invariance under addition,
 and (3) the fact that these distributions are the
 only possible limiting distributions for sums of
 independent, identically distributed, random
 variables.

 1. The law of Pareto.-Levy [291 has shown
 that the tails of stable Paretian distributions
 follow a weak or asymptotic form of the law
 of Pareto. That is,

 Pr(u > i) (4/Ul)-a as 4 -c o, (A3)

 and

 Pr('4 < fi) (|4 | U2)-a ( A4 )
 as 4 (A-co

 where u is the random variable, and the con-
 stants U1 and U2 are defined by46

 Ud 1Ua (A5)

 From expressions (A3) and (A4) it is possible
 to define approximate densities for the extreme
 tail areas of stable Paretian distributions. If a
 new function P(u) for the tail probabilities is
 defined by expressions (A3) and (A4), the den-
 sity functions for the asymptotic portions of the
 tails are given by

 p(u) -d P(u)/du (A6)

 a(Ui)a U-(a+l), U _-> 0

 p(U) x: a(U2)a 1-(a+'), u-> - oo . (A7)

 Although it has been proven that stable
 Paretian distributions are unimodal,47 closed
 expressions for the densities of the central areas
 of these distributions are known for only three
 cases, the Gaussian (a = 2), the Cauchy (a =
 1,3 = 0), and the well-known coin-tossing case
 (a = 2 = 1,6 = Oand y = 1). Atthispoint
 this is probably the greatest weakness in the
 theory. Without density functions it is very
 difficult to develop sampling theory for the pa-
 rameters of stable Paretian distributions. The
 importance of this limitation has been stressed
 throughout this paper. 48

 2. Stability or invariance under addition.-
 By definition, a stable Paretian distribution is
 any distribution that is stable or invariant
 under addition. That is, the distribution of
 sums of independent, identically distributed,
 stable Paretian variables is itself stable Paretian
 and has the same form as the distribution of
 the individual summands. The phrase "has the
 same form" is, of course, an imprecise verbal
 expression for a precise mathematical property.
 A more rigorous definition of stability is given
 by the logarithm of the characteristic function
 of sums of independent, identically distributed,
 stable Paretian variables. The expression for
 this function is

 n log f(t) =i(n5)t

 -(ny) I tta +io It w(t, a)] (A8)

 where n is the number of variables in the sum
 and logf(t) is the logarithm of the characteristic
 function for the distribution of the individual
 summands. Expression (A8) is the same as (Al),
 the expression for log f(t), except that the pa-
 rameters a (location) and Py (scale) are multi-
 plied by n. That is, except for origin and scale,

 46 The constants U1 and U2 can be regarded as
 scale parameters for the positive and negative tails
 of the distribution. The relative size of these two
 constants determines the value of ,3 and thus the
 skewness of the distribution. If U2 is large relative
 to U1, the distribution is skewed left (i.e., j3 < 0),
 and skewed right when U1 is large relative to U2

 (i.e., i > 0). When U1 is zero the distribution has
 maximal left skewness. When U2 is zero, the distri-
 bution has maximal right skewness. These two lim-
 iting cases correspond, of course, to values of /8 of
 -1 and 1. When U1 = U2, 8 0, and the distribu-
 tion is symmetric.

 47Ibraginov and Tchernin [23].

 48 It should be noted, however, that Bergstrom
 [7] has developed a series expansion to approximate
 the densities of stable Paretian distributions. The
 potential use of the series expansion in developing
 sampling theory for the parameters by means of
 Monte Carlo methods is discussed in Section VI of
 this paper.
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 the distribution of the sums is exactly the same
 as the distribution of the individual summands.
 More simply, stability means that the values
 of the parameters a and j remain constant
 under addition.

 The definition of stability is always in terms
 of independent, identically distributed random
 variables. It will now be shown, however, that
 any linear weighted sum of independent, stable
 Paretian variables with the same characteristic
 exponent a will be stable Paretian with the
 same value of a. In particular, suppose we have
 n independent, stable Paretian variables, ui,
 j = 1, ..., n. Assume further that the distribu-
 tions of the various uj have the same character-
 istic exponent a, but possibly different location,
 scale, and skewness parameters (6j, 'yj, and At,
 j = 1, . .., n). Let us now form a new variable,
 V, which is a weighted sum of the uj with con-
 stant weights pi, j = 1, . . ., n. The log charac-
 teristic function of V will then be

 n

 log F(t) = log fj( pit)
 i=1

 n n ~~~~(A9) =-i ( A t-I A j|pi a )

 X I ta Il+iP t w(t, a)
 where

 n

 E yj I pj I alo

 - i=l A1 0 ~ ~ ~ , (AlO0)
 n

 j I pjIa
 i~1

 and log fj(t) is the log characteristic function
 of ui. Expression (A9) is the log characteristic
 function of a stable Paretian distribution with
 characteristic exponent a and with location,
 scale, and skewness parameters that are weight-
 ed sums of the location, scale, and skewness
 parameters of the distributions of the uj.

 3. Limiting distributions.-It can be shown
 that stability or invariance under addition leads
 to a most important corollary property of
 stable Paretian distributions; they are the only
 possible limiting distributions for sums of inde-
 pendent, identically distributed, random vari-
 ahles.49 It is well known that if such variables

 have finite variance the limiting distribution
 for their sum will be the normal distribution.
 If the basic variables have infinite variance,
 however, and if their sums follow a limiting dis-
 tribution, the limiting distribution must be
 stable Paretian with 0 < a < 2.

 It has been proven independently by Gne-
 denko and Doeblin that, in order for the limit-
 ing distribution of sums to be stable Paretian
 with characteristic exponent a(O < a < 2), it
 is necessary and sufficient that50

 F(-U) C1

 1-F(u) - - as u-*C2, (All)

 and for every constant k > 0,

 1 -F(u) +F( - u)
 1 -F(ku) +F( - ku) (A12)

 as u-nco,

 where F is the cumulative distribution function
 of the random variable u and Ci and C2 are
 constants. Expressions (All) and (A12) will
 henceforth be called the conditions of Doeblin
 and Gnedenko.

 It is clear that any variable that is asymptot-
 ically Paretian (regardless of whether it is also
 stable) will satisfy these conditions. For such a
 variable, as u - a,

 F( - ) r( I -U I/U2) -a Ua2
 1 -F(u) (u/ UO ) - UaX

 and

 1 -F(u) +F( -u)
 1-F(ku) +F( - ku)

 ( U/ UI ) -a + ( IUI/U2 ) -a .= ka
 (ku/U)-ai+ ( ku I/U2)a =ka

 and the conditions of Doeblin and Gnedenko
 are satisfied.

 To the best of my knowledge non-stable,
 asymptotically Paretian variables with expo-
 nent a < 2 are the only known variables of in-
 finite variance that satisfy conditions (All) and
 (A12). Thus they are the only known non-
 stable variables whose sums approach stable
 Paretian limiting distributions with character-
 istic exponents less than 2.

 49 For a proof see Gnedenko and Kolmogorov
 [171, pp. 162-63.

 ;? For a proof see Gnedenko and Kolmogorov
 [17], pp. 175-80.
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 C. PROPERTIES OF RANGES OF SUMS OF

 STABLE PARETIAN VARIABLES

 By the definition of stability, sums of inde-
 pendent realizations of a stable Paretian vari-
 able are stable Paretian with the same value of
 the characteristic exponent a as the distribu-
 tion of the individual summands. The process
 of taking sums does, of course, change the scale
 or unit of measurement of the distribution.

 Let us now pose the problem of finding a
 constant by which to weight each variable in
 the sum so that the scale parameter of the dis-
 tribution of sums is the same as that of the dis-
 tribution of the individual summands. This
 amounts to finding a constant, a, such that

 nwylatla = yltla. (Al 3)
 Solving this expression for a we get

 a = "-l/a (A14)

 which implies that each of the summands must
 be divided by nala if the scale, or unit of meas-
 urement, of the distribution of sums is to be
 the same as that of the distribution of the indi-
 vidual summands. The converse proposition, of
 course, is that the scale of the distribution of
 unweighted sums is nala times the scale of the
 distribution of the individual summands. Thus,
 for example, the intersextile range of the dis-
 tribution of sums of n independent realizations
 of a stable Paretian variable will be nala times
 the intersextile range of the distribution of the
 individual summands. This property provides
 the basis of the range analysis approach to esti-
 mating a discussed in Section IV, C of this
 paper."

 D. PROPERTIES OF THE SEQUENTIAL VARIANCE

 OF A STABLE PARETIAN VARIABLE

 Let u be a stable Paretian random variable
 with characteristic exponent a < 2, and with
 location, scale, and skewness parameters 8, Py,
 and A3. Define a new variable, y = u - X, whose
 distribution is exactly the same as that of u,

 except that the location parameter has been
 set equal to 0.

 Suppose now that we are interested in the
 probability distribution of y2. The positive tail
 of the distribution of y2 is related to the tails
 of the distribution of y in the following way:

 Pr(y2 > 9) = Pr(y > 91/2)

 + Pr(y < - [91/2]) 9 > 0 (

 But since the tails of the distribution of y follow
 an asymptotic form of the law of Pareto, for
 very large values of y this is just

 Pr(y2 > 9) -+ (911/2/U)-a (A16)
 + (9112/U2)-aX 9 -

 Substituting C1 = Ua and C2 = Ua into ex-
 pression (A16) and simplifying we get

 Pr(y2 > 9) -> (C1 + C2) 9 (a/2) , (Al 7)

 which is a Paretian expression with exponent
 a' = a/2 and scale parameter C'1 = C1 + C2.

 The tail probabilities for the negative tail of
 the distribution of y2 are, of course, all identi-
 cally zero. This is equivalent to saying that the
 scale parameter, C2, in the Paretian expression
 for the negative tail of the distribution of y2 is
 zero.

 Let us now turn our attention to the distri-
 bution of sums of independent realizations of
 the variable y2. Since y2 is asymptotically Pare-
 tian, it satisfies the conditions of Doeblin and
 Gnedenko, and thus sums of y2 will approach a
 stable Paretian distribution with characteristic
 exponent a' = a/2 and skewness

 B'= 1, 2'=l. (A18)
 1 2

 We know from previous discussions that, if
 the scale of the distribution of sums is to be the
 same as that of the distribution of y22 the sums
 must be scaled by -,/a' = t-21a, where n is the
 number of summands. Thus the distributions
 of

 n

 y2 and n-2/a y2 (A19)
 i=1

 will be identical.

 This discussion provides us with a way to
 analyze the distribution of the sample variance
 of the stable Paretian variable u. For values

 51 It is worth noting that although the scale of
 the distribution of sums expands with n at the rate
 a1/ay, the scale parameter - expands directly with n.
 Thus y itself represents some more basic scale pa-
 rameter raised to the power of a. For example, in
 the normal case (a = 2) y is related to the variance,
 but the variance is just the square of the standard
 deviation. The standard deviation, of course, is the
 more direct measure of the scale of the normal dis-
 tribution.

This content downloaded from 129.199.200.94 on Fri, 23 Sep 2016 09:47:48 UTC
All use subject to http://about.jstor.org/terms



 BEHAVIOR OF STOCK-MARKET PRICES 105

 of a less than 2, the population variance of the
 random variable u is infinite. The sample vari-
 ance of n independent realizations of u is

 n

 S2= n-1 y . (A20)

 This can be multiplied by -2/Qa + 21a = I with
 the result

 S2= n-1+2/a (n-2/a y2 . (A2 1)

 Now we know that the distribution of

 n

 n-2/a y2

 is stable Paretian and independent of n. In
 particular, the median (or any other fractile)

 of this distribution has the same value for all n.
 This is not true, however, for the distribution
 of S2. The median or any other fractile of the
 distribution of S2 will grow in proportion to
 n-1+21/a. For example, if ut is an independent,
 stable Paretian variable generated in time
 series, then the .f fractile of the distribution of
 the cumulative sample variance of ut at time
 ti, as a function of the .1 fractile of the distribu-
 tion of the sample variance at time to is given
 by

 S2 = S2 (A2 2)

 where nl is the number of observations in the
 sample at time ti, no is the number at t, and
 S1 and S0 are the *f fractiles of the distribu-
 tions of the cumulative sample variances.

 This result provides the basis for the sequen-
 tial variance approach to estimating a discussed
 in Section IV, D of this paper.
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